E-Book, Englisch, 299 Seiten
Jawaid / Swain Bionanocomposites for Packaging Applications
1. Auflage 2018
ISBN: 978-3-319-67319-6
Verlag: Springer Nature Switzerland
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 299 Seiten
ISBN: 978-3-319-67319-6
Verlag: Springer Nature Switzerland
Format: PDF
Kopierschutz: 1 - PDF Watermark
This book presents a unified overview of eco-friendly bionanocomposites on the basis of characterization, design, manufacture, and application. It also explores replacing conventional materials with bionanocomposites with a focus on their use in packaging applications.In addition, the book broadens readers' insights by providing illustrations and tables summarizing the latest research on the packaging applications of different bionanocomposites. By offering a detailed account of this field of research and describing real-world applications, it enables researchers, scientists, and professionals in industry to develop a more informed understanding of the need for bionanocomposites in the development of green, biodegradable, and sustainable packaging applications.
Autoren/Hrsg.
Weitere Infos & Material
1;Preface;6
2;Contents;8
3;About the Editors;15
4;1 Perspectives of Bio-nanocomposites for Food Packaging Applications;17
4.1;Abstract;17
4.2;1.1 Introduction;17
4.3;1.2 Biopolymers;18
4.3.1;1.2.1 Bio-nanocomposites;19
4.3.1.1;1.2.1.1 Natural Bioresources (Edible Packaging Materials);19
4.3.1.1.1;Proteins;20
4.3.1.1.2;Carbohydrates;21
4.3.1.1.3;Lipids;22
4.3.1.2;1.2.1.2 Chemical Synthesis;24
4.3.1.2.1;Biomass;24
4.3.1.2.2;Petrochemicals;27
4.3.1.3;1.2.1.3 Microorganisms;31
4.3.1.3.1;Polyhydroxyalkanoates;31
4.3.1.3.2;Bacterial Cellulose;33
4.3.2;1.2.2 Nanofillers and Bio-nanocomposite Production;33
4.3.3;1.2.3 Commercial Bio-nanocomposites in Food Packaging Applications;34
4.4;1.3 Legal and Ethical Barriers;37
4.5;1.4 Future Trends and Concluding Remarks;39
4.6;References;40
5;2 Polymer-Based Bionanocomposites for Future Packaging Materials;49
5.1;Abstract;49
5.2;2.1 Introduction;49
5.2.1;2.1.1 The Main Aspect of Product Packaging;50
5.2.2;2.1.2 Safety Maintenance in Product Packaging;51
5.2.3;2.1.3 Commercialization of Product Through Packaging;51
5.3;2.2 Psychological Aspect of Product Packaging;52
5.4;2.3 Revolution in Packaging;54
5.5;2.4 Environmental Aspect of Product Packaging;55
5.6;2.5 Role of Starch in Packaging Application;55
5.7;2.6 Polymer Nanocomposites: An Alternative to Non-Biodegradable Plastics;56
5.8;2.7 Nanomaterials as Promising Filler in Polymer Based Bionanocomposites;56
5.8.1;2.7.1 Nanoclay;56
5.8.2;2.7.2 Nano Silicon Carbide;58
5.8.3;2.7.3 Nano Calcium Carbonate;58
5.9;2.8 Responsible Properties of Bionanocomposites for Packaging Applications;59
5.9.1;2.8.1 Fire Retardant Properties;59
5.9.2;2.8.2 Oxygen Barrier Properties;60
5.9.3;2.8.3 Thermal Properties;61
5.9.4;2.8.4 Mechanical Properties;62
5.10;2.9 Concluding Remarks;63
5.11;References;63
6;3 Cellulose Reinforced Biodegradable Polymer Composite Film for Packaging Applications;65
6.1;Abstract;65
6.2;3.1 Introduction;65
6.3;3.2 Chronological Events of Cellulose Fiber as Reinforcement in Composite Materials;66
6.4;3.3 Cellulose: A Biodegradable Polymer Reinforcement;68
6.4.1;3.3.1 Cellulose Nano-structured Materials;69
6.4.2;3.3.2 Cellulose Nanofibers;70
6.5;3.4 Cellulose Reinforced Biodegradable Polymer Composite Film;70
6.5.1;3.4.1 Types and Properties of Biodegradable Polymer;70
6.5.1.1;3.4.1.1 Polysaccharides;71
6.5.1.2;3.4.1.2 Proteins;72
6.5.1.3;3.4.1.3 Lipid;73
6.5.1.4;3.4.1.4 Polyhydroxyalkanoates (PHA);73
6.5.1.5;3.4.1.5 Polylactic Acid (PLA);74
6.5.2;3.4.2 Properties of Biodegradable Polymer-Cellulose Composite Film;74
6.6;3.5 Packaging Applications;79
6.7;3.6 Conclusion and Future Perspective;81
6.8;Acknowledgements;81
6.9;References;81
7;4 Nanohybrid Active Fillers in Food Contact Bio-based Materials;86
7.1;Abstract;86
7.2;4.1 Introduction;86
7.3;4.2 Inorganic Fillers with Potential Use in Food Contact;88
7.3.1;4.2.1 Clays;88
7.3.2;4.2.2 Hydrotalcites;92
7.3.3;4.2.3 Halloysites;94
7.3.4;4.2.4 Zeolites;96
7.3.5;4.2.5 Mica and Talc;97
7.4;4.3 Regulation Issues;99
7.4.1;4.3.1 European Union;99
7.4.2;4.3.2 United States (USA);100
7.5;4.4 Conclusions and Future Perspectives;101
7.6;References;102
8;5 Oil Palm Biomass Cellulose-Fabricated Polylactic Acid Composites for Packaging Applications;110
8.1;Abstract;110
8.2;5.1 Introduction;111
8.3;5.2 Materials and Methods;112
8.3.1;5.2.1 Materials;112
8.3.2;5.2.2 Oil Palm Mesocarp Fiber Pretreatment;112
8.3.3;5.2.3 One-Pot Nanofibrillation and Nanocomposite Production in a Twin-screw Extruder;112
8.3.4;5.2.4 Analyses;113
8.3.4.1;5.2.4.1 Visual Examination;113
8.3.4.2;5.2.4.2 Morphological Analysis;113
8.3.4.3;5.2.4.3 Mechanical Properties;113
8.3.4.4;5.2.4.4 Crystallinity;113
8.3.4.5;5.2.4.5 Thermal Properties;114
8.3.4.6;5.2.4.6 Contact Angle;114
8.4;5.3 Results and Discussion;114
8.4.1;5.3.1 Nanofibrillation of Cellulose by Extrusion;114
8.4.2;5.3.2 Mechanical Properties;114
8.4.3;5.3.3 Visual Appearance of Composite Samples;115
8.4.4;5.3.4 Morphological Analysis;116
8.4.5;5.3.5 Crystallinity Properties;117
8.4.6;5.3.6 Thermal Properties;118
8.4.7;5.3.7 Contact Angle Analysis;119
8.5;5.4 Conclusions;119
8.6;Acknowledgements;120
8.7;References;120
9;6 Chitosan-Based Bionanocomposite for Packaging Applications;121
9.1;Abstract;121
9.2;6.1 Introduction;121
9.3;6.2 Characterization of Chitosan-Based Nanocomposites;123
9.3.1;6.2.1 Fourier Transform Infrared Spectroscopy (FTIR) of Chitosan-Based Nanocomposites;123
9.3.2;6.2.2 X-ray Diffraction (XRD) Analysis of Chitosan-Based Nanocomposites;124
9.3.3;6.2.3 Scanning Electron Microscopy (SEM) Analysis of Chitosan-Based Nanocomposites;125
9.3.4;6.2.4 Transmission Electron Microscopy (TEM) Analysis of Chitosan-Based Nanocomposites;126
9.3.5;6.2.5 X-ray Photoelectron Spectroscopy (XPS) Analysis of Chitosan-Based Nanocomposites;127
9.4;6.3 Properties of Chitosan-Based Nanocomposites;128
9.4.1;6.3.1 Thermal Properties of Chitosan-Based Nanocomposites;128
9.4.2;6.3.2 Mechanical Properties of Chitosan-Based Nanocomposite;129
9.4.3;6.3.3 Oxygen Barrier Properties;131
9.4.4;6.3.4 Antibacterial Properties;131
9.5;6.4 Chitosan-Based Nanocomposite for Packaging Applications;132
9.6;6.5 Concluding Remarks;135
9.7;Acknowledgements;135
9.8;References;135
10;7 Sugar Palm Starch-Based Composites for Packaging Applications;139
10.1;Abstract;139
10.2;7.1 Introduction;139
10.3;7.2 Types of Packaging Materials;140
10.3.1;7.2.1 Bio-Based Plastics;141
10.4;7.3 Starch;142
10.4.1;7.3.1 Starch Structure;143
10.4.1.1;7.3.1.1 Amylose;144
10.4.1.2;7.3.1.2 Amylopectin;145
10.5;7.4 Sugar Palm Starch;145
10.5.1;7.4.1 Extraction and Preparation of Sugar Palm Starch;146
10.6;7.5 Modification of Sugar Palm Starch Films;147
10.6.1;7.5.1 Plasticization of Sugar Palm Starch Films;148
10.6.2;7.5.2 Sugar Palm Starch Blend;151
10.6.3;7.5.3 Sugar Palm Starch Bilayer Films;153
10.6.4;7.5.4 Sugar Palm Fiber Reinforced Sugar Palm Starch Biocomposites;154
10.6.5;7.5.5 Sugar Palm Cellulose Reinforced Sugar Palm Starch Biocomposites;156
10.6.6;7.5.6 Microcrystalline Cellulose (MCC) Reinforced Sugar Palm Starch;156
10.6.7;7.5.7 Sugar Palm Nanocellulose Reinforced Sugar Palm Starch;157
10.7;7.6 Conclusion;158
10.8;References;158
11;8 Natural Biopolymer-Based Nanocomposite Films for Packaging Applications;162
11.1;Abstract;162
11.2;8.1 Introduction;163
11.3;8.2 Basic Principles of Reinforcement;164
11.4;8.3 Carbon Nanomaterial-Based Reinforcement;167
11.4.1;8.3.1 Graphene-Based Functionalization;167
11.4.1.1;8.3.1.1 Synthesis of Graphene Oxide and Derivatives;167
11.4.1.1.1;Exfoliation of Graphite;168
11.4.1.1.2;Oxidation of Graphite;168
11.4.1.2;8.3.1.2 Biopolymer-Graphene Nanocomposites for Packaging;170
11.4.1.2.1;Starch;170
11.4.1.2.2;Cellulose;173
11.4.1.2.3;Poly(Lactic Acid);176
11.4.1.2.4;Poly(Hydroxyalkanoate);177
11.4.2;8.3.2 Carbon Nanotube-Based Functionalization;177
11.5;8.4 Clay and Silicate Nanoclay-Based Reinforcement;178
11.6;8.5 Cellulose Nanofiber, Starch Nanocrystal, and Chitosan Nanoparticle-Based Reinforcements;179
11.7;8.6 Antimicrobial Nanomaterial;180
11.8;8.7 Future Perspective and Limitations;181
11.9;8.8 Conclusion;183
11.10;References;184
12;9 Green Synthesis of Copper-Reinforced Cellulose Nanocomposites for Packaging Applications;191
12.1;Abstract;191
12.2;9.1 Introduction;192
12.3;9.2 Materials and Methods;192
12.3.1;9.2.1 Materials;192
12.3.2;9.2.2 Cassia alata Leaf Extraction;192
12.3.3;9.2.3 Synthesis of Copper Nanoparticles;193
12.3.4;9.2.4 Dissolution of Cellulose;193
12.3.5;9.2.5 Preparation of Cellulose Wet Films with CuNPs;193
12.3.6;9.2.6 FTIR Spectroscopic Analysis;193
12.3.7;9.2.7 Morphology;194
12.3.8;9.2.8 Thermogravimetric Analysis;194
12.3.9;9.2.9 Antibacterial Testing;194
12.4;9.3 Result and Discussion;194
12.4.1;9.3.1 Appearance of Matrix and Cellulose/CuNPs Composite Film;194
12.4.2;9.3.2 Size of the CuNPs Formed by Using the Cassia alata Leaf Extract as Reducing Agent;195
12.4.3;9.3.3 Distribution of Ex situ Generated CuNPs Inside the Matrix;195
12.4.4;9.3.4 Interaction Between Matrix and CuNPs;196
12.4.5;9.3.5 Antibacterial Activity;197
12.4.6;9.3.6 X-Ray Diffraction Analysis;199
12.4.7;9.3.7 Thermal Properties;200
12.5;9.4 Conclusions;200
12.6;References;201
13;10 Polysaccharides-Based Bionanocomposites for Food Packaging Applications;202
13.1;Abstract;202
13.2;10.1 Introduction;202
13.3;10.2 Biodegradable Polymers;204
13.4;10.3 Polysaccharides in Food Packaging;205
13.4.1;10.3.1 Plant-Based Polysaccharides for Food Packaging;205
13.4.1.1;10.3.1.1 Starch;205
13.4.1.2;10.3.1.2 Cellulose;206
13.4.1.3;10.3.1.3 Galactomannans;207
13.4.2;10.3.2 Animal-Based Polysaccharides for Food Packaging;207
13.4.2.1;10.3.2.1 Chitosan;207
13.4.3;10.3.3 Algae-Based Polysaccharides for Food Packaging;208
13.4.3.1;10.3.3.1 Alginate;208
13.4.3.2;10.3.3.2 Carrageenan;210
13.4.4;10.3.4 Microorganism-Based Polysaccharides for Food Packaging;211
13.4.4.1;10.3.4.1 Xanthan Gum;211
13.4.4.2;10.3.4.2 Gellan Gum;211
13.4.4.3;10.3.4.3 FucoPol;212
13.4.4.4;10.3.4.4 Pullulan;212
13.5;10.4 Conclusion;215
13.6;References;215
14;11 LDPE/RH/MAPE/MMT Nanocomposite Films for Packaging Applications;220
14.1;Abstract;220
14.2;11.1 Introduction;221
14.3;11.2 Materials and Methods;222
14.3.1;11.2.1 Materials;222
14.3.2;11.2.2 Preparation of Nanocomposite Films;223
14.4;11.3 Characterizations;224
14.4.1;11.3.1 X-Ray Diffraction;224
14.4.2;11.3.2 Mechanical Measurements;224
14.4.3;11.3.3 Oxygen Barrier Analysis;224
14.4.4;11.3.4 Morphological Analysis;225
14.5;11.4 Results and Discussion;225
14.5.1;11.4.1 X-Ray Diffraction;225
14.5.2;11.4.2 Mechanical Properties;227
14.5.3;11.4.3 Barrier Properties;229
14.5.4;11.4.4 Morphological Analysis;230
14.6;11.5 Conclusions;233
14.7;Acknowledgements;234
14.8;References;234
15;12 Rubber-Based Nanocomposites and Significance of Ionic Liquids in Packaging Applications;237
15.1;Abstract;237
15.2;12.1 Introduction;238
15.3;12.2 Natural Rubber Nanocomposites;239
15.4;12.3 Fillers in Rubber Nanocomposites;240
15.5;12.4 Carbon Black/Silica as Fillers;241
15.6;12.5 Carbon Nanotubes/Graphene Fillers in Rubber Nanocomposites;243
15.7;12.6 Ionic Liquids in Rubber Nanocomposites;244
15.8;12.7 Packaging Applications of Rubber Nanocomposites;247
15.9;12.8 Conclusion;248
15.10;References;249
16;13 Proteins as Agricultural Polymers for Packaging Production;253
16.1;Abstract;253
16.2;13.1 Introduction;254
16.3;13.2 Proteins for Packaging Materials;255
16.3.1;13.2.1 Corn Zein;255
16.3.2;13.2.2 Wheat Gluten;255
16.3.3;13.2.3 Soy Proteins;256
16.3.4;13.2.4 Peanuts and Cotton Seed Proteins;257
16.3.5;13.2.5 Milk Proteins;257
16.3.6;13.2.6 Collagen and Gelatin;257
16.3.7;13.2.7 Keratin;258
16.3.8;13.2.8 Egg Albumin Protein;258
16.3.9;13.2.9 Myofibrillar Proteins;258
16.4;13.3 Methods for the Formation of Packaging Materials from Proteins;259
16.4.1;13.3.1 Wet Processing;259
16.4.2;13.3.2 Dry Process;260
16.4.2.1;13.3.2.1 Thermo-Pressing/Thermoforming;261
16.4.2.2;13.3.2.2 Extrusion;262
16.5;13.4 Shaping Agents;262
16.5.1;13.4.1 Plasticizers;262
16.5.2;13.4.2 Cross-Linking Agents;263
16.6;13.5 Properties;263
16.7;13.6 Application of Proteins-Based Films and Edible Coatings;267
16.8;13.7 Future Prospects;269
16.9;References;269
17;14 Layer Double Hydroxide Reinforced Polymer Bionanocomposites for Packaging Applications;278
17.1;Abstract;278
17.2;14.1 Introduction;278
17.2.1;14.1.1 Bionanocomposites;279
17.2.2;14.1.2 Layered Double Hydroxide;280
17.2.3;14.1.3 Polymer/LDH Bionanocomposites;280
17.2.4;14.1.4 Importance of Layered Filler Polymer Nanocomposite;282
17.3;14.2 Synthesis of Polymer-LDH Bionanocomposite;283
17.3.1;14.2.1 Template Synthesis;284
17.3.2;14.2.2 Exfoliation-Adsorption;284
17.3.3;14.2.3 Melt Intercalation;285
17.3.4;14.2.4 In Situ Polymerization;286
17.3.5;14.2.5 Reconstruction Method;286
17.4;14.3 Characterisation of Polymer-LDH Bionanocomposite;287
17.4.1;14.3.1 Fourier Transform Infrared (FTIR) Spectroscopy;287
17.4.2;14.3.2 X-Ray Diffraction;288
17.4.3;14.3.3 Scanning Electron Microscopy (SEM) Study;289
17.4.4;14.3.4 Transmission Electron Microscopy (TEM) Study;290
17.5;14.4 Properties of LDH Based Bionanocomposites;292
17.5.1;14.4.1 Thermogravimetric Analysis (TGA);292
17.5.2;14.4.2 Gas and Moisture Obstruction Properties;294
17.5.3;14.4.3 Biodegradable Properties;296
17.5.4;14.4.4 Mechanical Properties;297
17.6;14.5 Conclusion and Future Prospective;297
17.7;Acknowledgements;298
17.8;References;298




