Javidi / Okano / Son | Three-Dimensional Imaging, Visualization, and Display | E-Book | www2.sack.de
E-Book

E-Book, Englisch, 531 Seiten

Javidi / Okano / Son Three-Dimensional Imaging, Visualization, and Display


1. Auflage 2010
ISBN: 978-0-387-79335-1
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, 531 Seiten

ISBN: 978-0-387-79335-1
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



Here is an up-to-date examination of recent developments in 3D imaging, as well as coverage of the prospects and challenges facing 3D moving picture systems and devices, including binocular, multi-view, holographic, and image reproduction techniques.

Javidi / Okano / Son Three-Dimensional Imaging, Visualization, and Display jetzt bestellen!

Weitere Infos & Material


1;Preface;6
2;Contents;8
3;Contributors;11
4;Part I 3-D Image Display and Generation TechniquesBased on I.P;16
4.1;1 Three-Dimensional Integral Television Using High-Resolution Video System with 2000 Scanning Lines;17
4.1.1; Introduction;17
4.1.2; Image Formation;19
4.1.2.1;1.2.1 Geometric Approach;19
4.1.2.2;1.2.2 Wave Optical Approach;21
4.1.3; Resolution;24
4.1.3.1;1.3.1 Derivation of MTF in Capture and Display Stages;25
4.1.3.2;1.3.2 Examples of MTF;27
4.1.3.3;1.3.3 Effect of Pixel Pitch;30
4.1.4; Experimental System;30
4.1.5; Conclusion;35
4.2;2 High Depth-of-Focus Integral Imaging with Asymmetric Phase Masks;38
4.2.1; Introduction;38
4.2.2; Principles of Integral Imaging;39
4.2.2.1;2.2.1 Pickup Stage;39
4.2.2.2;2.2.2 Reconstruction Stage;42
4.2.3; Asymmetric Phase Masks;44
4.2.4; Pickup with an Asymmetric Phase Mask;47
4.2.5; Reconstruction with an Asymmetric Phase Mask;48
4.2.6; Conclusion;50
4.3;3 Integral Imaging Using Multiple Display Devices;53
4.3.1; Introduction;53
4.3.2; A Method to Improve Image Depth;54
4.3.2.1;3.2.1 Image Depth;55
4.3.2.2;3.2.2 A System to Extend Image Depth;57
4.3.3; A Method to Improve the Viewing Angle;58
4.3.3.1;3.3.1 Viewing Angle;58
4.3.3.2;3.3.2 A System to Widen the Viewing Angle;59
4.3.4; A Method to Enhance Viewing Resolution;61
4.3.4.1;3.4.1 Viewing Resolution;61
4.3.4.2;3.4.2 A System to Enhance Viewing Resolution;62
4.3.5; Summary;64
4.4;4 3-D to 2-D Convertible Displays Using Liquid Crystal Devices;67
4.4.1; Background;67
4.4.2; LC Parallax Barrier Techniques;69
4.4.2.1;4.2.1 The LC Parallax Barrier Method;69
4.4.2.1.1; ;70
4.4.2.2;4.2.2 The Time Multiplexing Method;72
4.4.2.2.1; ;72
4.4.3; The LC Lenticular Lens Technique;73
4.4.3.1;4.3.1 The Solid Phase LC Lenticular Lens Method;74
4.4.3.1.1; ;74
4.4.3.2;4.3.2 The LC Active Lenticular Lens Method;75
4.4.3.3;4.3.3 The Slanted Lenticular Lens Method;76
4.4.4; 3-D/2-D Convertible Integral Imaging;77
4.4.4.1;4.4.1 3-D/2-D Convertible Integral Imaging with Point Light Sources;77
4.4.4.1.1; Integral Imaging with Point Light Source Array and the Polymer-Dispersed Liquid Crystal;78
4.4.4.1.2; Integral Imaging Using a LED Array;79
4.4.4.1.3; Integral Imaging Using a Pinhole Array on a Polarizer;80
4.4.4.1.4; Integral Imaging Using a Pinhole Array on a Liquid Crystal Panel;83
4.4.4.1.5; Integral Imaging Using a Fiber Array;83
4.4.4.2;4.4.2 3-D/2-D Convertible Integral Imaging with a Lens Array -- A Multilayer Display System;85
4.4.4.2.1; ;85
4.4.5; Conclusion;87
4.5;5 Effect of Pickup Position Uncertainty in Three-Dimensional Computational Integral Imaging;90
4.5.1; Introduction;90
4.5.2; Integral Imaging and Computational Reconstruction;91
4.5.3; Sensitivity Analysis of Synthetic Aperture Integral Imaging (SAII);94
4.5.4; Degradation Analysis for a Point Source;98
4.5.5; Experimental Results;100
4.5.6; Conclusion;105
4.5.7; Appendix;106
4.6;6 3-D Image Reconstruction with Elemental Images Printed on Paper;109
4.6.1; Introduction;109
4.6.2; Dynamic Integral Imaging;110
4.6.3; Static Integral Imaging;111
4.6.4; Experimental Results;111
4.6.5; Conclusion;114
5;Part II Multiview Image Acquisition, Processingand Display;117
5.1;7 Viewing Zones of IP and Other Multi-view Image Methods;118
5.1.1; Introduction;119
5.1.2; Basic Viewing Zone Forming Principle of Multi-view Imaging Methods;120
5.1.3; Image Composition in the Multi-view;122
5.1.4; Viewing Zones for Non-integer Number of Pixels in a Pixel Cell;127
5.1.5; Viewing Zones in IP;131
5.1.6; Image Composition in IP;135
5.1.7; Image Compositions in Other Multi-view Image Methods;136
5.1.8; Conclusions;137
5.2;8 Rich Media Services for T-DMB: 3-D Video and 3-D Data Applications;139
5.2.1; Introduction;139
5.2.2; The T-DMB System;140
5.2.2.1;8.2.1 Service Framework of T-DMB;141
5.2.2.2;8.2.2 The T-DMB Protocol;142
5.2.2.3;8.2.3 Applications;145
5.2.3; The 3-D DMB System;145
5.2.3.1;8.3.1 Basic Concepts and Requirements;145
5.2.3.2;8.3.2 The 3-D DMB Service Framework;147
5.2.3.3;8.3.3 3-D Video Service;147
5.2.3.3.1; 3-D DMB Sender;147
5.2.3.3.2; 3-D DMB Receiver;148
5.2.3.3.3; Implementation and Evaluation;149
5.2.3.4;8.3.4 3-D Data Service;150
5.2.4; Efficient Coding of Stereoscopic Video;151
5.2.4.1;8.4.1 Related Work;151
5.2.4.2;8.4.2 Structure of 3-D DMB Codec;152
5.2.4.3;8.4.3 Implementation;153
5.2.4.4;8.4.4 Experimental Results;154
5.2.5; Conclusions and Future Work;155
5.3;9 Depth Map Generation for 3-D TV: Importance of Edge and Boundary Information;160
5.3.1; Introduction;160
5.3.2; Primed for 3-D TV;161
5.3.3; Depth Image-based Rendering;162
5.3.4; Depth Map Generation;165
5.3.5; Effect of Edge and Boundary Information;167
5.3.5.1;9.5.1 Local Scale Method;167
5.3.5.2;9.5.2 Standard Deviation Method;168
5.3.5.3;9.5.3 Sobel Method;169
5.3.5.4;9.5.4 Subjective Assessment;169
5.3.6; Role of Edge and Boundary Information;177
5.3.6.1;9.6.1 Subjective Assessment;180
5.3.7; Conclusions and Future Research;183
5.4;10 Large Stereoscopic LED Display by Use of a Parallax Barrier;189
5.4.1; Introduction;190
5.4.2; Enlargement of Viewing Areas of Stereoscopic LED Display by Use of a Parallax Barrier;191
5.4.3; Design of Parallax Barrier for Plural Viewers;198
5.4.4; Elimination of Pseudoscopic Viewing Area;202
5.4.5; Trace of Viewers Movements;205
5.4.6; Recent Developments;209
5.4.7; Summay;210
5.5;11 Synthesizing 3-D Images with Voxels;212
5.5.1; Introduction;212
5.5.2; Description of Voxels in the Point Light Source Array;214
5.5.3; Pixel Patterns of Incomplete Voxels;220
5.5.4; Pixel Patterns of Pixel Cells with Rhomb Shapes;222
5.5.5; Comparison of 3-D Image Synthesis Between MV and IP Imaging Systems;227
5.5.6; Conclusion;229
5.6;12 Multi-view Image Acquisition and Display;231
5.6.1; Introduction;232
5.6.2; Stereoscopic Image Distortion Analysis in Parallel Type Camera Configuration;234
5.6.3; Stereoscopic Image Distortion Analysis in Radial Type Camera Configuration;238
5.6.4; Multi-view Image Acquisition and Display;244
5.6.5; Conclusions;251
5.7;13 3-D Video Processing for 3-D TV;254
5.7.1; Introduction;254
5.7.2; 3-D Content Generation;257
5.7.2.1;13.2.1 Background;257
5.7.2.2;13.2.2 3-D Data Acquisition;257
5.7.2.3;13.2.3 2-D/3-D Conversion;259
5.7.2.4;13.2.4 3-D Mixed Reality Content Generation;261
5.7.3; 3-D Video CODECs;263
5.7.3.1;13.3.1 Background;263
5.7.3.2;13.3.2 Disparity Estimation;264
5.7.3.3;13.3.3 3-D Video Compression;266
5.7.3.4;13.3.4 Multi-View Video Coding Standard;271
5.7.4; Video Processing for 3-D Displays;273
5.7.4.1;13.4.1 Background;273
5.7.4.2;13.4.2 Intermediate Video Synthesis;274
5.7.4.3;13.4.3 Virtual View Rendering;276
5.7.5; Conclusion;278
6;Part III 3-D Image Acquisition, Processing and DisplayBased on Digital Holography;282
6.1;14 Imaging 3-D Objects by Extending the Depth of Focus in Digital Holography;283
6.1.1; Introduction;283
6.1.2; Angular Spectrum Method for Reconstructing Holograms on Tilted Planes;285
6.1.2.1;14.2.1 Experimental Configuration;285
6.1.2.2;14.2.2 Description of the Method and Reconstruction Algorithm;286
6.1.3; Extended Focus Image (EFI) by Digital Holography;290
6.1.3.1;14.3.1 Approaches Adopted for Extending the Depth-of-Focus in Classical Microscopes;291
6.1.4; Construction of an EFI by Means of Digital Holography;291
6.1.5; Constructing an EFI by DH Using Amplitude Reconstructions;295
6.1.6; Constructing an EFI by DH Using Amplitude and Phase Reconstructions;296
6.1.7; Conclusions;301
6.2;15 Extraction of Three-dimensional Information from Reconstructions of In-Line Digital Holograms;304
6.2.1; Introduction;304
6.2.2; Digital Holographic Recording;306
6.2.2.1;15.2.1 PSI Setup;307
6.2.2.2;15.2.2 PSI Theory;309
6.2.2.3;15.2.3 PSI Proof;310
6.2.3; Focus Detection;312
6.2.3.1;15.3.1 Focus and Imaging;312
6.2.3.1.1; Focus Measures in Digital Holography;313
6.2.3.2;15.3.2 Evaluation of Two Focus Measures;315
6.2.3.3;15.3.3 Autofocus;318
6.2.3.4;15.3.4 Depth from Focus;318
6.2.4; Extraction of Data from Digital Holographic Reconstructions;321
6.2.4.1;15.4.1 Extraction of Shape Information;322
6.2.4.2;15.4.2 Extraction of Extended Focused Image;324
6.2.4.3;15.4.3 Extraction of Objects from Digital Holographic Reconstructions;324
6.2.4.3.1; Extraction of Objects from Background in Digital Holographic Reconstructions;324
6.2.4.3.2; Extraction of Multiple Objects from Reconstructions;326
6.2.4.4;15.4.4 Synthetic Digital Holographic Scene Creation;327
6.2.5; Conclusions;329
6.3;16 Polarimetric Imaging of 3-D Object by Use of Wavefront-Splitting Phase-Shifting Digital Holography;334
6.3.1; Introduction;334
6.3.2; Wavefront-Splitting Phase-Shifting Digital Holography with a Phase Difference Between Orthogonal Polarizations;335
6.3.2.1;16.2.1 Phase Analysis by Two-Step Method;335
6.3.2.2;16.2.2 Phase-Shifting Method with Orthogonal Polarizations;336
6.3.3; Wavefront-Splitting Phase-Shifting Digital Holography;337
6.3.4; Stokes Vector;338
6.3.5; Experimental Results;339
6.3.6; Conclusions;343
6.4;17 Three-dimensional Display with Data Manipulation based on Digital Holography;346
6.4.1; Introduction;346
6.4.2; Three-Dimensional Holographic Display Systems Based on Digital Holography;347
6.4.3; Fast Recording System of Complex Amplitude of 3-D Object Based on Digital Holography;347
6.4.3.1;17.3.1 Fast Recording Systems Based on Phase-shifting Digital Holography;348
6.4.3.2;17.3.2 Phase Retrieval Method for Instantaneous Recording;350
6.4.4; Information Processing;355
6.4.5; Conclusions;358
7;Part IV Other 3-D Image Acquisition and DisplayTechniques, and Human Factors;361
7.1;18 A 3-D Display System Using Motion Parallax;362
7.1.1; Introduction This chapter is not a comprehensive review of the area of motion parallax. For such a review, we recommend the chapter entitled Depth from motion parallax in '133 5 '135. They are currently writing a more up-to-date review that will appear soon. ;362
7.1.2; Early Accounts of Motion Parallax and Early and Recent Experimental Studies;363
7.1.3; Demonstration;366
7.1.4; The Suggested 3-D Display System;367
7.1.5; Summary;369
7.1.6; Appendix;370
7.2;19 Dynamic Three-Dimensional Human Model;372
7.2.1; Introduction;372
7.2.2; Outline of 3-D Modeling;373
7.2.3; Synchronous Capture of Images from Multiple Video Cameras;373
7.2.4; Camera Calibration;375
7.2.5; 3-D Modeling;376
7.2.5.1;19.5.1 Volume Intersection Method;376
7.2.5.2;19.5.2 Modification of the 3-D Shape by Using Stereo Matching;377
7.2.5.2.1; Initial Depth Image;378
7.2.5.2.2; Stereo Matching Method;378
7.2.5.2.3; Integration of Depth Images;380
7.2.6; Texture Mapping;381
7.2.7; Real-Time and Continuous Display System;383
7.2.7.1;19.7.0 Dynamic 3-D Model;383
7.2.7.2;19.7.0 Texture Images;383
7.2.7.3;19.7.0 Information on Polygon Visibility;384
7.2.7.4;19.7.0 Camera Parameters;384
7.2.8; 3-D Video System for Archiving Japanese Traditional Performing Arts;385
7.2.9; Conclusion;386
7.3;20 Electronic Holography for Real Objects Using Integral Photography;388
7.3.1; Introduction;388
7.3.2; Calculation of Holograms from Integral Photography;390
7.3.2.1;20.2.1 Principle of Transformation from Integral Photography into Hologram;391
7.3.2.2;20.2.2 Basic Calculation;392
7.3.2.3;20.2.3 Avoidance of Aliasing;395
7.3.2.4;20.2.4 Elimination of Undesired Beams;398
7.3.2.5;20.2.5 Image Reconstructed by Basic Calculation;400
7.3.3; Reducing Computing Load;404
7.3.3.1;20.3.1 Reduction of Computing Load by Limiting Range of Computation;405
7.3.3.2;20.3.2 Reduction of Computing Load by Shifting Optical Field;407
7.3.3.3;20.3.3 Images Reconstructed by Using Method of Reducing Computing Load;409
7.3.4; Electronic Holography Using Real IP Images;410
7.3.5; Conclusion;414
7.4;21 Working Towards Developing Human Harmonic Stereoscopic Systems;416
7.4.1; The Geometry of Reproduced 3-D Space and Space Perception;418
7.4.1.1;21.1.1 Setting Optical Axes in Stereoscopic Shooting;418
7.4.1.1.1; Shooting with Parallel Optical Axes;418
7.4.1.1.2; Shooting with Crossed Optical Axes;419
7.4.1.2;21.1.2 Converting from Shooting Space to Stereoscopic Image Space;419
7.4.1.2.1; Parallel Camera Configuration;422
7.4.1.2.2; Toed-in Camera Configuration;423
7.4.1.3;21.1.3 Puppet-Theater Effect;424
7.4.1.3.1; Parallel Camera Configuration;425
7.4.1.3.2; Toed-in Camera Configuration;426
7.4.1.4;21.1.4 Cardboard Effect;427
7.4.1.4.1; Parallel Camera Configuration;428
7.4.1.4.2; Toed-in Camera Configuration;428
7.4.1.5;21.1.5 Summary;429
7.4.1.6;21.1.6 Geometry Mapping Simulation System;430
7.4.2; Binocular Fusion, Stereopsis, and Visual Comfort;430
7.4.2.1;21.2.1 Visual Functions as Indices of Visual Fatigue When Watching Stereoscopic Images;435
7.4.2.1.1; Participants and Methods;436
7.4.2.1.2; Viewing Condition and Procedures;437
7.4.2.1.3; Results;437
7.4.2.1.4; Conclusions from this Experiment;442
7.4.2.2;21.2.2 Spatial Distribution in Depth of Objects;444
7.4.2.2.1; Methods;447
7.4.2.2.2; Procedure;448
7.4.2.2.3; Results;450
7.4.2.2.4; Conclusions of this Experiment;452
7.4.2.3;21.2.3 Temporal Distribution in Depth of Objects;454
7.4.2.3.1; Methods;454
7.4.2.3.2; Results;455
7.4.2.3.3; Conclusions of this Experiment;458
7.4.2.3.4; Non-Principle Factors and Their Desirable (Allowable) Ranges;459
7.4.3; How to Avoid Undesired Effects;461
7.4.3.1;21.3.1 How to Avoid Spatial Distortion of Represented Space by Stereoscopic Image Systems;461
7.4.3.2;21.3.2 How to Avoid Visual Fatigue in Viewing Stereoscopic Images;462
7.4.3.2.1; Future Work;462
7.4.4; Note;463
7.5;22 Development of Time-Multiplexed Autostereoscopic Display Based on LCD Panel;466
7.5.1; Introduction;466
7.5.2; Autostereoscopic Time-Multiplexed Display;467
7.5.2.1;22.2.1 Concept of the Display;467
7.5.2.2;22.2.2 Optical Layout;468
7.5.3; Dynamic Properties of the Display Parts;471
7.5.3.1;22.3.1 Scan-and-Hold Properties of LCD Panel;471
7.5.3.2;22.3.2 Time-Mismatch Cross Talk;473
7.5.3.3;22.3.3 Driving of Pi-Cell;475
7.5.3.4;22.3.4 LCD Response Time, Response Time Acceleration Technique and Dynamic Cross Talk;478
7.5.3.5;22.3.5 Other Methods for Correction of the LCD Shortcomings;482
7.5.3.6;22.3.6 Frame Rate of LCD Panel;484
7.5.4; Practical Implementation and Experimental Results;484
7.5.5; Extension of the Developed Technique to Passive Eyeglasses Type Stereoscopic System;486
7.5.6; Summary;489
7.6;23 3-D Nano Object Recognition by Use of Phase Sensitive Scatterometry;491
7.6.1; Introduction;491
7.6.2; RCWA Based Scatterometry Theory;492
7.6.3; Three-Dimensional Nano Object Recognition;494
7.6.4; Conclusion;497
8;Index;500



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.