E-Book, Englisch, 698 Seiten, Web PDF
Jardetzky / Roberts / Horecker NMR in Molecular Biology
1. Auflage 2013
ISBN: 978-1-4832-8185-8
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 698 Seiten, Web PDF
ISBN: 978-1-4832-8185-8
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
NMR in Molecular Biology provides an introduction to the basic concepts and principles of nuclear magnetic resonance (NMR) that are essential to a critical evaluation of experimental data. It also aims to acquaint readers in some detail with those prototype experiments in which a definite, biologically relevant answer has been obtained. The book opens with a chapter on the historical development of NMR technology. Separate chapters follow on the fundamental principles of NMR; paramagnetic perturbations of NMR spectra; time scales, chemical exchange, and problems of exchange; and characteristics of NMR spectra through investigations of compounds such as amino acids and peptides; and nucleic acid bases, nucleosides, and nucleotides. Subsequent chapters deal with protein NRM spectra, protein-ligand interactions, and the structure and dynamics of membranes. This book is intended for the student or practicing scientist wishing to gain a critical understanding of the applications of NMR to a wide range of problems in molecular biology.
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover;1
2;NMR in Molecular Biology;4
3;Copyright Page;5
4;Table of Contents;6
5;Preface;12
6;Acknowledgments;14
7;Chapter I. Introduction Text;16
8;Chapter II. Fundamental Principles;25
8.1;A. The NMR Phenomenon;26
8.2;B. The NMR Experiment;35
8.3;C. NMR on a Population of Identical Nuclei;37
8.4;D. The Chemical Shift;41
8.5;E. Spin-Spin Coupling;52
8.6;F. Fourier Transform NMR Spectroscopy;59
8.7;G. Microscopic Theory of Relaxation;67
8.8;H. Relaxation in Multispin Systems;75
9;Chapter III. Paramagnetic Perturbations of NMR Spectra;84
9.1;A. General Comments;84
9.2;B. General Theory of Paramagnetic Perturbations;86
9.3;C. Paramagnetic Shifts and Relaxation in Metalloproteins;102
9.4;D. The Extrinsic Paramagnetic Probe Method;105
9.5;E. Chemically and Photochemically Induced Dynamic Nuclear Polarization (CIDNP and Photo-CIDNP);127
10;Chapter IV. Time-Dependent Phenomena and Problems of Averaging;130
10.1;A. Definition of Time Scales;130
10.2;B. Chemical Exchange;131
10.3;C. Problems of Fast Exchange;141
11;Chapter V. Amino Acids and Peptides;158
11.1;A. Amino Acids;158
11.2;B. Peptides;166
11.3;C. Polyamino Acids and the Helix-Coil Transition;197
11.4;D. Conclusion;201
12;Chapter VI. Nucleic Acid Bases, Nucleosides, and Nucleotides;202
12.1;A. Tautomerism and Ionization;202
12.2;B. Molecular Interactions;205
12.3;C. Nucleoside and Mononucleotide Conformation;213
12.4;D. Dinucleotide Conformation;232
12.5;E. Conclusion;241
13;Chapter VII. Introduction to Protein NMR Spectra: General Features and Methodology;242
13.1;A. The 1H Spectrum;242
13.2;B. The 13C Spectrum;247
13.3;C. Secondary and Tertiary Structure Shifts;249
13.4;D. Experimental Limitations;253
13.5;E. Methods for Improving Resolution;254
13.6;F. Strategies for Assignment;265
14;Chapter VIII. Solution Structure and Conformational Transitions in Proteins;288
14.1;A. Comparisons of Solution and Crystal Structure;288
14.2;B. Detection of Specific Structural Features;293
14.3;C. Detection of Conformational Change;314
14.4;D. Protein Folding;335
15;Chapter IX. Protein—Ligand Interactions Part I;343
15.1;A. General Considerations;343
15.2;B. Ribonuclease;348
15.3;C. Staphylococcal Nuclease;360
15.4;D. Lysozyme;365
15.5;E. Dihydrofolate Reductase;371
15.6;F. Antibody-Combining Sites;382
15.7;G. Alkaline Phosphatase;386
15.8;H. Gene 5 Protein;391
16;Chapter X. Protein-Ligand Interactions Part II;394
16.1;A. Kinases (Phosphotransferases);394
16.2;B. Dehydrogenases;406
16.3;C. Serine Proteases;412
16.4;D. Aspartate Transcarbamylase;416
16.5;E. Glycogen Phosphorylase;420
16.6;F. Concanavalin A;422
16.7;G. Aspartate Aminotransferase;423
16.8;H. Glutamine Synthetase;425
16.9;I. Protein Hydration and Ion Binding;427
17;Chapter XI. Enzyme Mechanisms;432
17.1;A. Structural Considerations;432
17.2;B. Substrate Equilibria;433
17.3;C. Stereochemistry and Isotope Exchange;435
17.4;D. Observation of Intermediates and Intermediate Analogs;450
17.5;E. Studies of the Catalytic Process;458
18;Chapter XII. Protein Dynamics;463
18.1;A. General Considerations;463
18.2;B. Qualitative Evidence for the Flexibility of Protein Segments and Domains;464
18.3;C. Quantitative Study of Internal Motions by Relaxation Methods;480
19;Chapter XIII. Nucleic Acids and Nucleic Acid-Protein Interactions;508
19.1;A. Types of Problems Investigated;508
19.2;B. Oligo- and Polynucleotides;509
19.3;C. Transfer RNA;518
19.4;D. DNA;530
19.5;E. Binding and Intercalation;540
19.6;F. Nucleic Acid-Protein Interactions;550
20;Chapter XIV. Structure and Dynamics of Membranes;552
20.1;A. Organization and Mobility of Hydrocarbon Chains in Phospholipid Structures;554
20.2;B. Conformational Studies on Phospholipid Head Groups;571
20.3;C. EflFects of Cholesterol and Other Molecules Dissolved in the Bilayer;574
20.4;D. Hydration and Ion Binding;582
20.5;E. Ionophores in Phospholipid Bilayers;584
20.6;F. Protein-Lipid Interactions;586
20.7;G. Studies of Natural Membranes;592
21;Appendix I. Definition of Symbols;596
22;Appendix II. Vector, Tensor, and Matrix Notation;602
23;References;606
24;Author Index;652
25;Subject Index;680