Japkowicz / Boukouvalas | Machine Learning Evaluation | Buch | 978-1-316-51886-1 | sack.de

Buch, Englisch, 420 Seiten, Format (B × H): 175 mm x 250 mm, Gewicht: 910 g

Japkowicz / Boukouvalas

Machine Learning Evaluation


Erscheinungsjahr 2024
ISBN: 978-1-316-51886-1
Verlag: Cambridge University Press

Buch, Englisch, 420 Seiten, Format (B × H): 175 mm x 250 mm, Gewicht: 910 g

ISBN: 978-1-316-51886-1
Verlag: Cambridge University Press


As machine learning applications gain widespread adoption and integration in a variety of applications, including safety and mission-critical systems, the need for robust evaluation methods grows more urgent. This book compiles scattered information on the topic from research papers and blogs to provide a centralized resource that is accessible to students, practitioners, and researchers across the sciences. The book examines meaningful metrics for diverse types of learning paradigms and applications, unbiased estimation methods, rigorous statistical analysis, fair training sets, and meaningful explainability, all of which are essential to building robust and reliable machine learning products. In addition to standard classification, the book discusses unsupervised learning, regression, image segmentation, and anomaly detection. The book also covers topics such as industry-strength evaluation, fairness, and responsible AI. Implementations using Python and scikit-learn are available on the book's website.

Japkowicz / Boukouvalas Machine Learning Evaluation jetzt bestellen!

Weitere Infos & Material


Part I. Preliminary Considerations: 1. Introduction; 2. Statistics overview; 3. Machine learning preliminaries; 4. Traditional machine learning evaluation; Part II. Evaluation for Classification: 5. Metrics; 6. Re-sampling; 7. Statistical analysis; Part III. Evaluation for Other Settings: 8. Supervised settings other than simple classification; 9. Unsupervised learning; Part IV. Evaluation from a Practical Perspective: 10. Industrial-strength evaluation; 11. Responsible machine learning; 12. Conclusion; Appendices: A. Statistical tables; B. Advanced topics in classification metrics; References; Index.


Japkowicz, Nathalie
Nathalie Japkowicz is Professor and Chair of the Department of Computer Science at American University, Washington DC. She previously taught at the University of Ottawa. Her current research focuses on lifelong anomaly detection and hate speech detection. In the past, she researched one-class learning and the class imbalance problem extensively. She has received numerous awards, including Test of Time and Distinguished Service awards.

Boukouvalas, Zois
Zois Boukouvalas is Assistant Professor in the Department of Mathematics and Statistics at American University, Washington DC. His research focuses on the development of interpretable multi-modal machine learning algorithms, and he has been the lead principal investigator of several research grants. Through his research and teaching activities, he is creating environments that encourage and support the success of underrepresented students for entry into machine learning careers.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.