E-Book, Englisch, Band 546, 567 Seiten
Janyani / Singh / Tiwari Optical and Wireless Technologies
1. Auflage 2019
ISBN: 978-981-13-6159-3
Verlag: Springer Nature Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark
Proceedings of OWT 2018
E-Book, Englisch, Band 546, 567 Seiten
Reihe: Lecture Notes in Electrical Engineering
ISBN: 978-981-13-6159-3
Verlag: Springer Nature Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark
This volume presents selected papers from the 2nd International Conference on Optical and Wireless Technologies, conducted from 10th to 11th February, 2018. It focuses on extending the limits of currently used systems encompassing optical and wireless domains, and explores novel research on wireless and optical techniques and systems, describing practical implementation activities, results and issues. The book will serve as a valuable reference resource for academics and researchers across the globe.
Prof. Vijay Janyani obtained his Bachelors and Masters degrees in Electronics and Communication Engineering (ECE) from Malaviya Regional Engineering College, Jaipur (now MNIT, Jaipur) and his PhD from the George Green Institute for Electromagnetics Research in Nottingham (U.K.). He has received various awards and honours, such as the University of Nottingham's Derrick Kirk Prize, the Commonwealth Scholarship UK, and the All India Council for Technical Education Career Award. He has completed various national and international government-funded research projects, and was a member of the visiting faculty at the AIT Bangkok and UoTEM Tunisia. His current research interests include optical communication, optoelectronics and photonics, numerical modelling, nonlinear optics, radio frequency (RF) and microwaves, optical networks, and solar energy.Prof. Ghanshyam Singh received his Masters and PhD degrees in ECE from Malaviya National Institute of Technology (MNIT), Jaipur. He has been a visiting scholar/visiting professor at various universities and research centres, in the UK, Finland and Japan. Dr. Singh is engaged in joint research projects with partner researchers from Keio University (Japan), the University of Vienna (Austria), Cairo University (Egypt) and Lviv Polytechnic National University (LNPU) (Ukraine). His current research interests include antenna engineering, micro and nano-structured photonic devices, and networks and non-linear characteristics of photonic crystal fibers.
Prof. Manish Tiwari received his Ph.D. in Electronics and Communication Engineering (ECE) in the field of Photonics from Malaviya National Institute of Technology (MNIT), Jaipur. He is currently a professor at Manipal University, Jaipur. He was a visiting researcher at City University, London in 2010 and 2011 and Tsinghua University, Beijing, China in 2016. Dr. Tiwari has presented talks at a number of universities in Hong Kong, Bangkok, and London. He has also served on the panel of experts at various workshops. His current research interests include micro/nano-structured photonic devices, nonlinear optics and photonic crystal fibers.
Prof Antonio d'Alessandro obtained his PhD in Electronic Engineering at the University of Bari, Italy. He is a Professor in Department of Information Engineering, Electronics and Telecommunications at Sapienza University of Rome. He has been the President of the Italian Liquid Crystal Society since 2010, Vice president of the IEEE Photonics Society (Italian chapter) since 2017, and is a member of Optical Society of America and of CNR - IMM (Institute for Microelectronics and Microsystems). Prof Alessandro has authored more than 130 research papers in peer reviewd jounals, book chapters and international conferences.
Autoren/Hrsg.
Weitere Infos & Material
1;Conference Committee Members;6
1.1;Organizing Committee;6
2;Preface;9
3;Acknowledgements;11
4;Our Reviewers;12
5;Invited Speakers;15
6;Contents;19
7;About the Editors;25
8;Performance Evaluation of Transparent and Non-transparent Flexible Antennas;28
8.1;1 Introduction;28
8.2;2 Antenna Design;30
8.3;3 Results and Discussion;31
8.4;4 Conclusion;33
8.5;References;33
9;Analyzing Frequency Spectra of Signals Generated by Chaotic DC–DC Converter and Its Application in Secure Communication;36
9.1;1 Introduction;36
9.2;2 Nonlinear Dynamics in Buck–Boost Converter;38
9.3;3 Hybrid Adaline-Prony’s Method for Frequency Spectrum Analysis;41
9.4;4 Frequency Estimation of Signals Generated by Chaotic Buck–Boost Converter;42
9.5;5 Conclusion;43
9.6;References;45
10;Survivability Standard Techniques Implementation in Fiber Optic Networks (SSTIFON)—An Overview;46
10.1;1 Introduction;46
10.2;2 Problem Statement;47
10.2.1;2.1 Fiber Layout Distribution Analysis;48
10.2.2;2.2 Restoration Scheme Analysis;50
10.3;3 Conclusion;53
10.4;References;54
11;Design and Analysis of Novel Dispersion Compensating Model with Chirp Fiber Bragg Grating for Long-Haul Transmission System;55
11.1;1 Introduction;55
11.2;2 Dispersion Compensation with CFBG;57
11.2.1;2.1 Principle of Chirped Fiber Bragg Grating;57
11.2.2;2.2 Design and Simulation of Proposed CFBG Model;58
11.3;3 Results and Discussions;60
11.4;4 Conclusion;61
11.5;References;62
12;External Modulation Using MZM for Visible Wavelengths;63
12.1;1 Introduction;63
12.2;2 Theory and Design Analysis;64
12.3;3 Results and Discussion;65
12.4;4 Conclusion;66
12.5;References;67
13;A Detailed Survey of Rectenna for Energy Harvesting: Over a Wide Range of Frequency;68
13.1;1 Background;68
13.2;2 Introduction;69
13.3;3 Rectenna Classified;70
13.4;4 Conclusion;77
13.5;References;77
14;Trap-Assisted Enlarged Photoresponsivity of Er-Doped In2O3 Thin Films;81
14.1;1 Introduction;81
14.2;2 Experimental Details;82
14.3;3 Results and Discussions;83
14.3.1;3.1 I–V Responses of the Schottky Devices;83
14.3.2;3.2 Responsivity and Function of Defect States;85
14.3.3;3.3 Photosensitivity and Temporal Responses of the Schottky Devices;86
14.4;4 Conclusion;87
14.5;References;87
15;Optical Wireless Hybrid Networks for 5G;89
15.1;1 Introduction;89
15.2;2 Basics of 5G;91
15.2.1;2.1 Technological Specifications of 5G;91
15.3;3 Why Optical Systems Required for 5G;92
15.3.1;3.1 Features of 5G and Its Matching Aspects with Optical Communication;92
15.4;4 Hybrid Optical Wireless Architecture for 5G;93
15.5;5 Conclusions;94
15.6;References;95
16;A Dual-Band Minkowski-Shaped MIMO Antenna to Reduce the Mutual Coupling;96
16.1;1 Introduction;96
16.2;2 Antenna Geometry and Analysis;98
16.3;3 Results and Discussion;98
16.4;4 Conclusions;100
16.5;References;100
17;A Novel EBG-Loaded Dual Band-Notched UWB Antenna;102
17.1;1 Introduction;102
17.2;2 Design and Analysis;104
17.3;3 Results and Discussion;104
17.4;4 Conclusion;110
17.5;References;110
18;Time-Correlated MIMO Channels Using Decision Feedback Receiver;111
18.1;1 Introduction;112
18.1.1;1.1 Wireless Communication: An Overview;112
18.1.2;1.2 Multiple-Input Multiple-Output (MIMO);112
18.2;2 Space–Time Coding Strategies for MIMO-OFDM;114
18.2.1;2.1 Linear Predictive Coding (LPC);114
18.3;3 Proposed Method;115
18.3.1;3.1 Convolutional Encoding;115
18.3.2;3.2 Trellis Diagram;115
18.3.3;3.3 Decoding the Convolutional Codes;118
18.4;4 Simulation Result;118
18.5;5 Conclusion;121
19;Link Budget Profile for Infrared FSO Link with Aerial Platform;122
19.1;1 Introduction;122
19.2;2 System Model;123
19.3;3 Performance Analysis;126
19.4;4 Link Budget Analysis;128
19.5;5 Conclusion;130
19.6;References;130
20;Design of Optical Quaternary Multiplier Circuit Using Polarization Switch;132
20.1;1 Introduction;133
20.2;2 Working Principles of the Proposed Scheme;133
20.3;3 Scheme of Optical Quaternary Multiplier;134
20.4;4 Discussion;139
20.5;5 Conclusion;140
20.6;References;140
21;Coverage Optimization of a VLC-Based Smart Room with Genetic Algorithm;141
21.1;1 Introduction;141
21.2;2 Model of Visible Light Communication System for Indoor Environment;142
21.2.1;2.1 VLC Channel Model for Indoor Environment;142
21.2.2;2.2 Lambert Index;143
21.2.3;2.3 VLC Received Optical Power;144
21.2.4;2.4 VLC SNR;144
21.3;3 Coverage Optimization of VLC;144
21.3.1;3.1 Power Regulator Factor of LED;144
21.3.2;3.2 Genetic Algorithm for Coverage Optimization;145
21.4;4 Simulation and Results;146
21.5;5 Conclusion;148
21.6;References;148
22;A Compact Wideband Polygon Patch Antenna for Ku-Band Applications;149
22.1;1 Introduction;149
22.2;2 Antenna Configuration;150
22.3;3 Results and Discussion;151
22.4;4 Conclusion;154
22.5;References;155
23;Design of Uniform Linear Practical Antenna Arrays for Ultralow;156
23.1;1 Introduction;156
23.2;2 Formulations;157
23.2.1;2.1 Element Pattern of Dipole;157
23.2.2;2.2 Element Pattern of a Rectangular Waveguide;158
23.2.3;2.3 Sum Patterns from an Arrays of Waveguides and Dipoles;159
23.3;3 Results;160
23.4;4 Conclusions;166
23.5;References;166
24;On Maximizing Blind Rendezvous Probability in Cognitive Radio Ad Hoc Networks;168
24.1;1 Introduction;168
24.2;2 Related Work;171
24.3;3 Proposed Work;172
24.3.1;3.1 System Model;172
24.3.2;3.2 Channel-Ranking Rendezvous Procedure;172
24.4;4 Simulation and Result Analysis;174
24.5;5 Conclusion;176
24.6;References;177
25;Effects of Core Count and Layout on the Bending-Radius-Dependent Crosstalk Variations in Heterogeneous and Trench-Assisted Heterogeneous Multicore Fiber;179
25.1;1 Introduction;179
25.2;2 Design Parameters;181
25.3;3 Crosstalk Variations in Different Layouts of Heterogeneous and Trench-Assisted Heterogeneous MCFs;182
25.4;4 Results and Discussion;186
25.5;5 Conclusion;187
25.6;References;188
26;Impact of Air–Sea Interface Effects and Bubble and Particulate Scattering on Underwater Light Field Distribution: An Implication to Underwater Wireless Optical Communication System;189
26.1;1 Introduction;189
26.2;2 In Situ Data and Methodology;190
26.2.1;2.1 In Situ Data;190
26.2.2;2.2 Monte Carlo Simulation;191
26.3;3 Effects Influencing Underwater Light Field Distribution;192
26.3.1;3.1 Sea Surface Roughness;192
26.3.2;3.2 Bubble Scattering;193
26.3.3;3.3 Medium Inhomogeneity;193
26.4;4 Results and Discussion;194
26.5;5 Conclusion;195
26.6;References;195
27;Strain Resolution and Spatial Resolution Improvement of BOCDR-Based DSS System Using Particle Swarm Optimization Algorithm;197
27.1;1 Introduction;197
27.2;2 Principle and Theory;199
27.2.1;2.1 BOCDR Technique;199
27.2.2;2.2 Particle Swarm Optimization Algorithm;201
27.3;3 Simulation Results and Discussions;202
27.4;4 Conclusion;206
27.5;References;208
28;Interference Minimized Slot Scheduling for Coexisting WBANs: Delay and Priority-Based Approach;211
28.1;1 Introduction;212
28.2;2 System Model;213
28.2.1;2.1 Network Model and Assumptions;213
28.2.2;2.2 Interference Model;214
28.3;3 Proposed Approach;216
28.3.1;3.1 Priority Calculation;216
28.3.2;3.2 Delay-Aware Priority Based Scheduling for Coexistence of WBANs;217
28.3.3;3.3 DAP Example;218
28.4;4 Performance Evaluation;219
28.4.1;4.1 Simulation Environment;220
28.4.2;4.2 Results and Discussions;220
28.5;5 Conclusion;222
28.6;References;223
29;Design and Analysis of Refractive Index Sensor Based on Dual-Core Photonic Crystal Fiber (DC-PCF) with Rectangular Air Hole Lattice Structure;225
29.1;1 Introduction;225
29.2;2 PCF Design;226
29.3;3 Simulation Results and Discussion;228
29.4;4 Conclusion;230
29.5;References;230
30;Gain and Bandwidth Enhancement by Optimizing Four Elements Corporate-Fed Microstrip Array for 2.4 GHz Applications;232
30.1;1 Introduction;232
30.2;2 Microstrip Patch Antenna Design;233
30.3;3 Microstrip Antenna Array Design;234
30.4;4 Simulation Results and Discussions;236
30.5;5 Conclusions;239
30.6;References;239
31;Speaker Identification Through Natural and Whisper Speech Signal;240
31.1;1 Introduction;240
31.2;2 Feature Extraction;241
31.2.1;2.1 Mel Frequency Cepstral Coefficient (MFCC);242
31.2.2;2.2 Exponential Frequency Cepstral Coefficient (EFCC);242
31.3;3 Feature Classification;243
31.3.1;3.1 Gaussian Mixture Model;243
31.3.2;3.2 K-Means Clustering;244
31.4;4 Proposed Speaker Identification Algorithm;244
31.4.1;4.1 Training Algorithm of Proposed Method;244
31.4.2;4.2 Testing Algorithm of the Proposed Method;245
31.5;5 Results;246
31.6;6 Conclusion;247
31.7;7 Future Scope;247
31.8;References;248
32;Design of Y-Shaped Immensely Wideband Printed Monopole Antenna with Three Notched Bands;249
32.1;1 Introduction;249
32.2;2 Antenna Design and Analysis;250
32.2.1;2.1 Parametric Variation Study;252
32.3;3 Results and Discussion;253
32.4;4 Conclusion;258
32.5;References;258
33;A Printed Ultra-wideband Monopole Antenna with Triple Band Notch Characteristics;259
33.1;1 Introduction;259
33.2;2 Antenna Design and Analysis;260
33.2.1;2.1 Parametric Variation Study;261
33.3;3 Results and Discussion;263
33.4;4 Conclusion;267
33.5;References;267
34;Parabolic Pulse Generation at 1550 nm Raman Amplifier Utilizing High Power Pump Laser;268
34.1;1 Introduction;268
34.2;2 Raman Amplifier Modeling;269
34.3;3 Simulation Setup;270
34.4;4 Conclusion;274
34.5;References;274
35;Performance Evaluation of Polar Code for Ultrareliable Low Latency Applications of 5G New Radio;275
35.1;1 Introduction;275
35.2;2 Channel Coding Requirements for NR-URLLC Scenario;276
35.3;3 FEC Code Candidates for NR-URLLC;277
35.3.1;3.1 Turbo Code;277
35.3.2;3.2 LDPC Code;278
35.3.3;3.3 Convolutional Code;278
35.3.4;3.4 Polar Code;279
35.4;4 Polar Code Fitness for NR-URLLC;279
35.5;5 Performance Evaluation of Polar Code Through Simulation Results for NR-URLLC;280
35.5.1;5.1 Performance Parameters Under Consideration;281
35.6;6 Conclusion;283
35.7;References;283
36;Low Confinement Loss Solid Core Rectangular Photonic Crystal Fiber;285
36.1;1 Introduction;285
36.2;2 Numerical Analysis;286
36.3;3 Conclusion;290
36.4;References;291
37;Integration of Contactless Power Measuring Instruments to PLC and SCADA Through Industrial Wireless Sensor Network for EMS;292
37.1;1 Introduction;292
37.2;2 Proposed Scheme for EMS;294
37.2.1;2.1 Measurement Scheme;294
37.2.2;2.2 Communication Scheme;299
37.2.3;2.3 Integrated Controller Scheme;302
37.3;3 Conclusion;304
37.4;References;304
38;An Overview of Smart Identity Cards for Educational Institutions;306
38.1;1 Introduction;306
38.2;2 History of RFID Development;307
38.3;3 Principles of Radio-Frequency Identification;308
38.3.1;3.1 RFID Active Tags;308
38.3.2;3.2 RFID Passive Tags;309
38.4;4 Comparisons Between RFID, Barcode and Quick Response Code;309
38.5;5 Online Surveilling System;311
38.6;6 Tighten Visitor’s Security;311
38.7;7 Access Control for Buildings;312
38.8;8 Conclusion;313
38.9;References;313
39;Design of High Birefringence with Two Zero Dispersion Wavelength and Highly Nonlinear Hybrid Photonic Crystal Fiber;314
39.1;1 Introduction;314
39.2;2 Simulation Results and Discussions;315
39.3;3 Conclusion;318
39.4;References;318
40;A Review on Code Families for SAC–OCDMA Systems;320
40.1;1 Introduction;320
40.2;2 Spectral Amplitude Coding (SAC) Systems;321
40.3;3 Literature Survey;322
40.3.1;3.1 1D Codes;322
40.3.2;3.2 Variable Cross-Correlation Code;324
40.3.3;3.3 Zero Cross-Correlation Code;324
40.3.4;3.4 2D Codes;325
40.4;4 Conclusion;326
40.5;References;326
41;OFDM over Optical Fiber;329
41.1;1 Introduction;329
41.2;2 OFDM over Optical Fiber;330
41.3;3 Simulation Setup and Results;331
41.4;4 Conclusion;333
41.5;References;334
42;High Contrast Ratio Based All-Optical OR and NOR Plasmonic Logic Gate Operating at E Band;336
42.1;1 Introduction;336
42.2;2 All-Optical Plasmonic OR Gate;338
42.3;3 All-Optical Plasmonic NOR Gate;339
42.4;4 Conclusion;342
42.5;References;342
43;Defected Ground Structure Microstrip Antenna for WiMAX;344
43.1;1 Introduction;344
43.2;2 Defected Ground Structure (DGS);345
43.3;3 Proposed Work;345
43.4;4 Designing of Patch;348
43.5;5 Results;349
43.6;6 Conclusion;357
43.7;References;357
44;Fractal MIMO Antenna for Wireless Application;358
44.1;1 Introduction;358
44.2;2 Antenna Design;359
44.3;3 Result and Discussion;360
44.4;4 Envelope Correlation Coefficient;364
44.5;5 Prototype and Measured Results;365
44.6;6 Conclusion;366
44.7;References;366
45;Microstrip Patch Antenna Array for UWB Application;368
45.1;1 Introduction;368
45.2;2 Antenna Design;369
45.2.1;2.1 Single Element Antenna with Modified Ground Plane;369
45.2.2;2.2 Antenna with Two Parasitic Elements and with Modified Ground Plane;371
45.3;3 Result and Discussion;371
45.3.1;3.1 Parametric Study;372
45.3.2;3.2 Optimized Antenna Array Performance;372
45.4;4 Conclusion;373
45.5;References;374
46;Review for Capacity and Coverage Improvement in Aerially Controlled Heterogeneous Network;375
46.1;1 Introduction;376
46.2;2 Network Model;377
46.2.1;2.1 Mathematical Model;378
46.3;3 Key Aspect of Network Model;380
46.3.1;3.1 Advantages, Applications, and Challenges of Network Model;380
46.4;4 Background and Related Work;380
46.5;5 Conclusions;384
46.6;References;385
47;Modified ?-Law Companding Transform for PAPR Reduction in SC-FDMA Systems;387
47.1;1 Introduction;388
47.2;2 Proposed SC-FDMA System with Companding;388
47.2.1;2.1 Modified µ-Law Companding;390
47.3;3 Results and Discussion;391
47.4;4 Conclusions;394
47.5;References;395
48;Performance Analysis of Free Space Optical Communication System Using Different Modulation Schemes over Weak to Strong Atmospheric Turbulence Channels;397
48.1;1 Introduction;397
48.2;2 System and Channel Model;399
48.2.1;2.1 System Model;399
48.2.2;2.2 Gamma–Gamma Distribution Channel Model;400
48.2.3;2.3 Lognormal Distribution Channel Model;400
48.3;3 Basic Modulation Techniques;401
48.3.1;3.1 OOK Modulation;401
48.3.2;3.2 QPSK Modulation;402
48.3.3;3.3 PPM Modulation (M-PPM);402
48.4;4 BER and Average Channel Capacity Under Atmospheric Turbulence;402
48.4.1;4.1 BER Comparison of Various Modulation Techniques;402
48.4.2;4.2 Average Channel Capacity Comparison of Various Modulation Techniques;404
48.5;5 Simulated Results and Discussion;405
48.6;6 Conclusion;408
48.7;References;408
49;Investigation of Nonlinear Effects in Electronically Pattern Reconfigurable Hexagon-Shaped Loop Antenna;410
49.1;1 Introduction;410
49.2;2 Antenna Geometry and Operation;412
49.3;3 Behavior at Higher Input Power Levels;414
49.4;4 Harmonic Simulations;415
49.4.1;4.1 Two-Tone Simulation Setup;415
49.4.2;4.2 Simulation Results;415
49.4.3;4.3 Gain Compression Point Simulation;417
49.5;5 Conclusion;417
49.6;References;418
50;An Offset CPW-Fed Dual-Band Circularly Polarized Printed Antenna for Multiband Wireless Applications;419
50.1;1 Introduction;419
50.2;2 Antenna Configuration;420
50.2.1;2.1 Design Approach and Analysis;421
50.2.2;2.2 Surface Current Distributions;423
50.2.3;2.3 Radiation Patterns and Gain;424
50.3;3 Conclusion;425
50.4;References;425
51;Comparative Study of Interferometer and Ring Resonator Based Biosensors: A Review;427
51.1;1 Introduction;427
51.2;2 Interferometer-Based Optical Biosensors;428
51.2.1;2.1 Hartman Interferometer;428
51.2.2;2.2 Silicon Nitride Slot Waveguide Based Mach–Zehnder Interferometer;429
51.2.3;2.3 Ring-Assisted Mach–Zehnder Interferometer;429
51.3;3 Ring Resonator Based Optical Biosensors;430
51.3.1;3.1 Polymer Microring Resonators;430
51.3.2;3.2 Slot Waveguide Ring Resonator;432
51.3.3;3.3 Double Slot Waveguide Ring Resonator;432
51.3.4;3.4 Hybrid Optical Sensor;432
51.4;4 Conclusion;433
51.5;References;434
52;A Comparative Study of Various All-Optical Logic Gates;436
52.1;1 Introduction;436
52.2;2 All-Optical Gate;437
52.2.1;2.1 Four-Wave Mixing;437
52.2.2;2.2 Cross-Gain Modulation;438
52.2.3;2.3 Cross-Phase Modulation;438
52.3;3 Electro-optic Effect;438
52.4;4 Mach–Zehnder Interferometer;439
52.5;5 Implementation Design of Logic Gates;440
52.5.1;5.1 AND Gate;440
52.5.2;5.2 NAND Gate;441
52.5.3;5.3 NOR Gate;442
52.6;6 Conclusion;443
52.7;References;443
53;Supercontinuum Generation at 3100 nm in Dispersion-Engineered As38.8Se61.2-Based Chalcogenide Photonic Crystal Fibers;445
53.1;1 Introduction;445
53.2;2 Method of Analysis;447
53.3;3 Proposed PCFs Design and Analysis;448
53.4;4 Supercontinuum Generation in Proposed PCF;450
53.5;5 Conclusion;451
53.6;References;452
54;Gap Coupled Swastika-Shaped Patch Antenna for X and Ku Band Applications;454
54.1;1 Introduction;454
54.2;2 Antenna Design and Configuration;456
54.3;3 Result and Discussion;457
54.4;4 Conclusions;459
54.5;References;459
55;Highly Sensitive Octagonal Photonic Crystal Fiber for Ethanol Detection;461
55.1;1 Introduction;461
55.2;2 Design of PCF;462
55.2.1;2.1 Principle of Operations;463
55.3;3 Results and Analysis;465
55.4;4 Conclusion;469
55.5;References;469
56;Design and Studies of Bandstop Filters Using Modified CSRR DGS for WLAN Applications;471
56.1;1 Introduction;471
56.2;2 Design Goals and Specifications;472
56.3;3 Comparisons of Various DB-DGS;473
56.4;4 Proposed CSRR DGS Filter, Fabrication and Measurement;473
56.4.1;4.1 Design Parameters;475
56.4.2;4.2 Fabrication and Measurement;475
56.5;5 Results and Discussion;478
56.6;6 Conclusions;478
56.7;References;479
57;Novel Security Enhancement Technique for OCDMA and SAC OCDMA Against Eavesdropping Using Multi-diagonal Code and Gating Scheme;480
57.1;1 Introduction;480
57.2;2 Code Construction;481
57.3;3 System Design with Eavesdropper;483
57.4;4 System Design Description;484
57.5;5 Results and Discussion;486
57.6;6 Conclusion;487
57.7;7 Future Work;488
57.8;References;488
58;Photonic Integration Based on Liquid Crystals for Low Driving Voltage Optical Switches;490
58.1;1 Introduction;490
58.2;2 Liquid Crystal Waveguide Switches on Silicon;491
58.3;3 Liquid Crystal Waveguides Embedded in PDMS;492
58.4;4 A Zero-Gap Coupler Photonic Switch Made of LC:PDMS Waveguides;494
58.5;5 Conclusions;495
58.6;References;495
59;Design and Analysis of Decagonal Photonic Crystal Fiber for Liquid Sensing;497
59.1;1 Introduction;497
59.2;2 Geometry of Proposed D-PCF;498
59.3;3 Results and Numerical Analysis;499
59.4;4 Conclusion;502
59.5;References;502
60;Design and Implementation of Multiband Planar Antenna with DGS for Wireless Applications;504
60.1;1 Introduction;504
60.2;2 Antenna Design with Simulation Result;505
60.3;3 Simulation Results;507
60.4;4 Experimental Results;509
60.5;5 Conclusions;512
60.6;References;512
61;Performance of QPSK Modulation for FSO Under Different Atmospheric Turbulence;514
61.1;1 Introduction;514
61.2;2 System Description;515
61.2.1;2.1 Transmitter;515
61.2.2;2.2 Atmospheric Turbulence;517
61.2.3;2.3 Receiver;518
61.3;3 Numerical Results and Discussions;518
61.4;4 Conclusion;520
61.5;References;521
62;Multi-junction Solar Cell Based on Efficient III–V InGaP/GaAs with GaInAsP as BSF Layers;522
62.1;1 Introduction;522
62.2;2 Working of Solar Cell;523
62.3;3 Materials Used in Solar Cell;524
62.3.1;3.1 GaInP (Gallium Indium Phosphide);524
62.3.2;3.2 InGaAsP (Aluminium Gallium Arsenide Phosphide);524
62.3.3;3.3 GaAs (Gallium Arsenide);525
62.4;4 Solar Cell Modelling;525
62.4.1;4.1 Device Structure;525
62.4.2;4.2 Different Layers Present in Solar Cell;526
62.4.3;4.3 Importance of GaAs as Tunnel Junction;526
62.4.4;4.4 Importance of GaInAsP as BSF and Window Layer;527
62.4.5;4.5 Electrical Modelling of Multi-Junction Solar Cell;527
62.5;5 Parameters;528
62.5.1;5.1 Quantum Efficiency (QE);529
62.5.2;5.2 Short Circuit Current (I_sc );529
62.5.3;5.3 Open Circuit Voltage (V_oc );530
62.5.4;5.4 Fill Factor (FF);530
62.5.5;5.5 Efficiency;531
62.6;6 Simulation and Results;531
62.7;7 Conclusion;532
62.8;References;533
63;A Brief Review on Microwave Breast Imaging Technique;534
63.1;1 Introduction;534
63.2;2 Electrical Properties of the Breast Tissues;535
63.3;3 Microwave Breast Imaging Technique;536
63.3.1;3.1 Active Microwave Imaging;536
63.3.2;3.2 Passive Microwave Imaging;537
63.3.3;3.3 Hybrid Microwave Imaging;537
63.4;4 Conclusion;538
63.5;References;538
64;Design of Planar Triple-Band Electrically Small Asymmetrical Antenna for ISM, WLAN, and X-Band Applications;540
64.1;1 Introduction;541
64.2;2 Antenna Design;542
64.3;3 Parametric Study;545
64.3.1;3.1 Effect of the Distance Between the Patch and the Ground (L);545
64.3.2;3.2 Effect of the Feedgap (D);546
64.4;4 Results and Discussions;547
64.5;5 Conclusions;548
64.6;References;550
65;Design and Study of a Photonic Crystal Fiber Biosensor Based on Surface Plasmon Resonance;551
65.1;1 Introduction;551
65.2;2 Basic Principle and Numerical Modeling of PCF-SPR Sensor;552
65.2.1;2.1 Model;552
65.2.2;2.2 Principle;554
65.3;3 Results;555
65.4;4 Conclusion;558
65.5;References;558
66;Iterative Fourier Transform Optimization of Computer Generated Fourier Holograms;559
66.1;1 Introduction;560
66.2;2 Proposed Fourier Holographic Techniques;561
66.2.1;2.1 Fourier Hologram;561
66.2.2;2.2 Iterative Fourier Transform Algorithm (IFTA);562
66.2.3;2.3 Mathematical Verification;562
66.3;3 Results;562
66.4;4 Conclusion and Future Scope;564
66.5;References;567




