Jain / Verhelst Towards Heterogeneous Multi-core Systems-on-Chip for Edge Machine Learning
1. Auflage 2023
ISBN: 978-3-031-38230-7
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
Journey from Single-core Acceleration to Multi-core Heterogeneous Systems
E-Book, Englisch, 186 Seiten
Reihe: Engineering (R0)
ISBN: 978-3-031-38230-7
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
This book explores and motivates the need for building homogeneous and heterogeneous multi-core systems for machine learning to enable flexibility and energy-efficiency. Coverage focuses on a key aspect of the challenges of (extreme-)edge-computing, i.e., design of energy-efficient and flexible hardware architectures, and hardware-software co-optimization strategies to enable early design space exploration of hardware architectures. The authors investigate possible design solutions for building single-core specialized hardware accelerators for machine learning and motivates the need for building homogeneous and heterogeneous multi-core systems to enable flexibility and energy-efficiency. The advantages of scaling to heterogeneous multi-core systems are shown through the implementation of multiple test chips and architectural optimizations.
Zielgruppe
Professional/practitioner
Autoren/Hrsg.
Weitere Infos & Material
Chapter 1: Introduction.- Chapter 2 Algorithmic Background for Machine Learning.- Chapter 3 Scoping the Landscape of (Extreme) Edge Machine Learning Processors.- Chapter 4 Hardware-Software Co-optimization through Design Space Exploration.- Chapter 5 Energy Efficient Single-core Hardware Acceleration.- Chapter 6 TinyVers: A Tiny Versatile All-Digital Heterogeneous Multi-core System-on-Chip.- Chapter 7 DIANA: Digital and ANAlog Heterogeneous Multi-core System-on-Chip.- Chapter 8 Networks-on-chip to Enable Large-scale Multi-core ML Acceleration.- Chapter 9 Conclusion.




