Jain / Tomita / Simon | Algorithmic Learning Theory | Buch | 978-3-540-29242-5 | sack.de

Buch, Englisch, 491 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 1560 g

Reihe: Lecture Notes in Artificial Intelligence

Jain / Tomita / Simon

Algorithmic Learning Theory

16th International Conference, ALT 2005, Singapore, October 8-11, 2005, Proceedings
2005
ISBN: 978-3-540-29242-5
Verlag: Springer Berlin Heidelberg

16th International Conference, ALT 2005, Singapore, October 8-11, 2005, Proceedings

Buch, Englisch, 491 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 1560 g

Reihe: Lecture Notes in Artificial Intelligence

ISBN: 978-3-540-29242-5
Verlag: Springer Berlin Heidelberg


This book constitutes the refereed proceedings of the 16th International Conference on Algorithmic Learning Theory, ALT 2005, held in Singapore in October 2005.

The 30 revised full papers presented together with 5 invited papers and an introduction by the editors were carefully reviewed and selected from 98 submissions. The papers are organized in topical sections on kernel-based learning, bayesian and statistical models, PAC-learning, query-learning, inductive inference, language learning, learning and logic, learning from expert advice, online learning, defensive forecasting, and teaching.

Jain / Tomita / Simon Algorithmic Learning Theory jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Editors’ Introduction.- Editors’ Introduction.- Invited Papers.- Invention and Artificial Intelligence.- The Arrowsmith Project: 2005 Status Report.- The Robot Scientist Project.- Algorithms and Software for Collaborative Discovery from Autonomous, Semantically Heterogeneous, Distributed Information Sources.- Training Support Vector Machines via SMO-Type Decomposition Methods.- Kernel-Based Learning.- Measuring Statistical Dependence with Hilbert-Schmidt Norms.- An Analysis of the Anti-learning Phenomenon for the Class Symmetric Polyhedron.- Learning Causal Structures Based on Markov Equivalence Class.- Stochastic Complexity for Mixture of Exponential Families in Variational Bayes.- ACME: An Associative Classifier Based on Maximum Entropy Principle.- Constructing Multiclass Learners from Binary Learners: A Simple Black-Box Analysis of the Generalization Errors.- On Computability of Pattern Recognition Problems.- PAC-Learnability of Probabilistic Deterministic Finite State Automata in Terms of Variation Distance.- Learnability of Probabilistic Automata via Oracles.- Learning Attribute-Efficiently with Corrupt Oracles.- Learning DNF by Statistical and Proper Distance Queries Under the Uniform Distribution.- Learning of Elementary Formal Systems with Two Clauses Using Queries.- Gold-Style and Query Learning Under Various Constraints on the Target Class.- Non U-Shaped Vacillatory and Team Learning.- Learning Multiple Languages in Groups.- Inferring Unions of the Pattern Languages by the Most Fitting Covers.- Identification in the Limit of Substitutable Context-Free Languages.- Algorithms for Learning Regular Expressions.- A Class of Prolog Programs with Non-linear Outputs Inferable from Positive Data.- Absolute Versus Probabilistic Classification in a Logical Setting.-Online Allocation with Risk Information.- Defensive Universal Learning with Experts.- On Following the Perturbed Leader in the Bandit Setting.- Mixture of Vector Experts.- On-line Learning with Delayed Label Feedback.- Monotone Conditional Complexity Bounds on Future Prediction Errors.- Non-asymptotic Calibration and Resolution.- Defensive Prediction with Expert Advice.- Defensive Forecasting for Linear Protocols.- Teaching Learners with Restricted Mind Changes.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.