E-Book, Englisch, Band 557, 254 Seiten
Jahangiri / Wang / Da Silva Electrical Design of a 400 kV Composite Tower
1. Auflage 2019
ISBN: 978-3-030-17843-7
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, Band 557, 254 Seiten
Reihe: Lecture Notes in Electrical Engineering
ISBN: 978-3-030-17843-7
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
This book presents an innovative concept for designing a 400 kV double circuit composite tower. The major challenges encountered by the authors in the electrical design process of the composite tower are addressed. They concern material selection for the full composite cross-arm core, electrical insulation of the cross-arm, electrical dimensioning of the full composite tower, lightning shielding performance and failure of the full composite tower. The electric field performance of the tower's insulation has been investigated theoretically by using finite element method and experimentally by testing different fiber reinforced polymers as candidates. The book reports in detail those finite element simulations and tests, together with the authors' recommendations on the most suitable materials and manufacturing process as well as conductor clamp designs for the cross-arm. Another important issue of the full composite tower, which concerns the environmental aspects of the full composite tower, has also been evaluated. This book offers a timely reference guide on a highly innovative topic, addressing researchers working on power transmission system both in industry and academia.
Autoren/Hrsg.
Weitere Infos & Material
1;Preface;6
2;Contents;8
3;1 Overview of Composite-Based Transmission Pylons;13
3.1;1.1 Introduction;13
3.2;1.2 Composite-Based Transmission Towers-State of the Art Review;14
3.2.1;1.2.1 Demand for New Overhead Lines;14
3.2.2;1.2.2 Aesthetical Overhead Transmission Pylons;14
3.2.3;1.2.3 Composite-Based Transmission Pylons;17
3.3;1.3 Introduction of Power Pylons of the Future Project;18
3.4;1.4 Challenges and Research Objectives;20
3.5;1.5 Outlines of Book;23
3.6;References;24
4;2 Fiber Reinforced Plastic (FRP) Composite Selection for the Composite Cross-Arm Core;26
4.1;2.1 Fiber Reinforced Plastic (FRP) Composites;26
4.1.1;2.1.1 Fibers;26
4.1.2;2.1.2 Polymers;27
4.1.3;2.1.3 Manufacturing Methods;28
4.2;2.2 Application of Fiber Reinforced Plastic (FRP) Composites to Transmission Towers;29
4.2.1;2.2.1 Composite Insulators;29
4.2.2;2.2.2 Composite Cross-Arms;31
4.2.3;2.2.3 Composite Tower Poles;33
4.3;2.3 Fiber Reinforced Plastic (FRP) Composites in the Fully Composite Pylon;37
4.3.1;2.3.1 Structure of the Composite Cross-Arm;37
4.3.2;2.3.2 Electrical and Mechanical Effects on the Fiber Reinforced Plastic (FRP) Core;37
4.3.3;2.3.3 Fiber Reinforced Plastic (FRP) Properties in Consideration;40
4.4;2.4 Electrical Test on Fiber Reinforced Plastic (FRP) Composites;42
4.4.1;2.4.1 Test Circuit and Setup;42
4.4.2;2.4.2 Electrical Test;51
4.4.3;2.4.3 Discussion;60
4.5;2.5 Electrical-Mechanical Combined Test on Fiber Reinforced Plastic (FRP) Composites;63
4.5.1;2.5.1 Combined Test Circuit and Setup;64
4.5.2;2.5.2 Combined Test;67
4.5.3;2.5.3 Test Results;69
4.5.4;2.5.4 Discussion;72
4.6;2.6 Summary;73
4.7;References;74
5;3 Air Clearances of Fully Composite Pylon;77
5.1;3.1 Introduction;77
5.2;3.2 Insulation Coordination;78
5.2.1;3.2.1 Overvoltages;79
5.2.2;3.2.2 Insulation Strength Characteristics;79
5.2.3;3.2.3 Failure Risk of Insulation;81
5.3;3.3 Insulation Coordination Procedure;84
5.4;3.4 Determination of Minimum Required Air Clearances;84
5.4.1;3.4.1 Internal and External Clearances at the Tower Top and Mid-Span;89
5.5;3.5 Summary;90
5.6;References;91
6;4 Electrical Design of Fully Composite Pylon;92
6.1;4.1 Introduction;92
6.2;4.2 Insulation Design;92
6.2.1;4.2.1 Creepage Distance;92
6.2.2;4.2.2 Shed Profile;94
6.3;4.3 Electric Field Considerations;99
6.3.1;4.3.1 Electric Field Criteria;101
6.4;4.4 Finite Element Analysis of Fully Composite Pylon;102
6.4.1;4.4.1 Basic Design of Fully Composite Pylon;102
6.4.2;4.4.2 Modifications in Fully Composite Pylon Design;106
6.4.3;4.4.3 Optimization of Corona Rings;109
6.5;4.5 Summary;124
6.6;References;124
7;5 Electric Field Verification by High Voltage Experiments on the Composite Cross-Arm;127
7.1;5.1 Introduction;127
7.1.1;5.1.1 Fundamental of Corona Discharge;127
7.1.2;5.1.2 Corona Discharge on the Surface of a Composite Insulator;130
7.1.3;5.1.3 Electric Field Distribution Around Composite Insulators;131
7.1.4;5.1.4 Water Induced Corona Discharge;133
7.2;5.2 Water Induced Corona Test Circuit and Setup;136
7.2.1;5.2.1 Schematic of the Test Circuit;137
7.2.2;5.2.2 Test Setup;139
7.3;5.3 Electric Field Distribution on the the Composite Cross-Arm;148
7.3.1;5.3.1 Electric Field on the Cross-Arm Surface with Initial Design;148
7.3.2;5.3.2 Electric Field on the Cross-Arm Segment in the Test;149
7.4;5.4 Water Induced Corona Discharge Test;150
7.4.1;5.4.1 Test Procedure;150
7.4.2;5.4.2 Test Results;151
7.4.3;5.4.3 Effects of Inclined Angles;154
7.5;5.5 Discussion;158
7.5.1;5.5.1 Criterion for Allowable Electric Field Magnitude on the Cross-Arm Surface;158
7.5.2;5.5.2 Effects of Inclined Angles on Water Induced Corona Activities;159
7.6;5.6 Summary;161
7.7;References;162
8;6 Lightning Shielding Performance of Fully Composite Pylon;164
8.1;6.1 Introduction;164
8.2;6.2 Shielding Angle;164
8.3;6.3 Shielding Analysis Using Electro-Geometric Method (EGM);168
8.4;6.4 Fully Composite Pylon with -60° Shielding Angle;171
8.5;6.5 Shielding Analysis Using Rolling Sphere Method (RSM);177
8.5.1;6.5.1 Protected Areas and Striking Distances in Rolling Sphere Method;179
8.5.2;6.5.2 Application of Rolling Sphere Method for Fully Composite Pylon;181
8.6;6.6 Summary;185
8.7;References;186
9;7 Lightning Shielding Failure Investigation by High Voltage Experiments;187
9.1;7.1 Introduction;187
9.1.1;7.1.1 Electro-Geometric Model (EGM);187
9.1.2;7.1.2 Scale Model Test;188
9.2;7.2 Shielding Performance Evaluated by Electro-Geometric Model (EGM) of the Fully Composite Pylon;192
9.3;7.3 Scale Model Test for the Fully Composite Pylon;193
9.3.1;7.3.1 Experimental Setup;193
9.3.2;7.3.2 Test Progress;197
9.3.3;7.3.3 Test Results and Analysis;199
9.4;7.4 Comparison of Electro-Geometric Model (EGM) and Scale Model Test Results;203
9.4.1;7.4.1 Shielding Failure Zone;203
9.4.2;7.4.2 Maximum Shielding Failure Current;204
9.4.3;7.4.3 Shielding Failure Rate (SFR) and Shielding Failure Flashover Rate (SFFOR);206
9.4.4;7.4.4 Effects of the Cross-Arm Inclined Angle;207
9.5;7.5 Summary;208
9.6;References;209
10;8 Environmental Effects of Fully Composite Pylon;211
10.1;8.1 Introduction;211
10.2;8.2 Surface Gradient on Phase Conductors;212
10.3;8.3 Audible Noise;216
10.3.1;8.3.1 Audible Noise Results and Discussions;217
10.3.2;8.3.2 Acoustic Performance of an Overhead Line Composed of Fully Composite Pylons;221
10.4;8.4 Radio Noise;222
10.4.1;8.4.1 Radio Noise Results and Discussions;224
10.4.2;8.4.2 Radio Noise Performance of Line;227
10.5;8.5 Corona Loss;228
10.5.1;8.5.1 Calculated Corona Losses and Discussion;229
10.6;8.6 Electromagnetic Emissions;230
10.6.1;8.6.1 Phase Conductor Arrangements;231
10.6.2;8.6.2 Analytical and Finite Element Method Results and Comparison;232
10.6.3;8.6.3 Determination of Right-of-Way (ROW) Width;235
10.7;8.7 Summary;236
10.8;References;237
11;9 Conclusion;239
11.1;9.1 Conclusions;239
11.2;9.2 Future Challenges;245
12;A;247
13;B;250




