Jänich | Topology | Buch | 978-0-387-90892-2 | sack.de

Buch, Englisch, 193 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 483 g

Reihe: Undergraduate Texts in Mathematics

Jänich

Topology

Buch, Englisch, 193 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 483 g

Reihe: Undergraduate Texts in Mathematics

ISBN: 978-0-387-90892-2
Verlag: Springer


Contents: Introduction. - Fundamental Concepts. -
Topological Vector Spaces.- The Quotient Topology. -
Completion of Metric Spaces. - Homotopy. - The Two
Countability Axioms. - CW-Complexes. - Construction of
Continuous Functions on Topological Spaces. - Covering
Spaces. - The Theorem of Tychonoff. - Set Theory (by T.
Br cker). - References. - Table of Symbols. -Index.
Jänich Topology jetzt bestellen!

Zielgruppe


Lower undergraduate

Weitere Infos & Material


§1. What is point-set topology about?.- §2. Origin and beginnings.- I Fundamental Concepts.- §1. The concept of a topological space.- §2. Metric spaces.- §3. Subspaces, disjoint unions and products.- §4. Bases and subbases.- §5. Continuous maps.- §6. Connectedness.- §7. The Hausdorff separation axiom.- §8. Compactness.- II Topological Vector Spaces.- §1. The notion of a topological vector space.- §2. Finite-dimensional vector spaces.- §3. Hilbert spaces.- §4. Banach spaces.- §5. Fréchet spaces.- §6. Locally convex topological vector spaces.- §7. A couple of examples.- III The Quotient Topology.- §1. The notion of a quotient space.- §2. Quotients and maps.- §3. Properties of quotient spaces.- §4. Examples: Homogeneous spaces.- §5. Examples: Orbit spaces.- §6. Examples: Collapsing a subspace to a point.- §7. Examples: Gluing topological spaces together.- IV Completion of Metric Spaces.- §1. The completion of a metric space.- §2. Completion of a map.- §3. Completion of normed spaces.- V Homotopy.- §1. Homotopic maps.- §2. Homotopy equivalence.- §3. Examples.- §4. Categories.- §5. Functors.- §6. What is algebraic topology?.- §7. Homotopy—what for?.- VI The Two Countability Axioms.- §1. First and second countability axioms.- §2. Infinite products.- §3. The role of the countability axioms.- VII CW-Complexes.- §1. Simplicial complexes.- §2. Cell decompositions.- §3. The notion of a CW-complex.- §4. Subcomplexes.- §5. Cell attaching.- §6. Why CW-complexes are more flexible.- §7. Yes, but… ?.- VIII Construction of Continuous Functions on Topological Spaces.- §1. The Urysohn lemma.- §2. The proof of the Urysohn lemma.- §3. The Tietze extension lemma.- §4. Partitions of unity and vector bundle sections.- §5. Paracompactness.- IX Covering Spaces.- §1. Topological spaces over X.- §2. The concept of a covering space.- §3. Path lifting.- §4. Introduction to the classification of covering spaces.- §5. Fundamental group and lifting behavior.- §6. The classification of covering spaces.- §7. Covering transformations and universal cover.- §8. The role of covering spaces in mathematics.- X The Theorem of Tychonoff.- §1. An unlikely theorem?.- §2. What is it good for?.- §3. The proof.- Last Chapter Set Theory (by Theodor Bröcker).- References.- Table of Symbols.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.