E-Book, Englisch, 254 Seiten, eBook
Reihe: Universitext
E-Book, Englisch, 254 Seiten, eBook
Reihe: Universitext
ISBN: 978-3-642-55682-1
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Upper undergraduate
Autoren/Hrsg.
Weitere Infos & Material
1 Introduction.- 2 Axioms of Probability.- 3 Conditional Probability and Independence.- 4 Probabilities on a Finite or Countable Space.- 5 Random Variables on a Countable Space.- 6 Construction of a Probability Measure.- 7 Construction of a Probability Measure on R.- 8 Random Variables.- 9 Integration with Respect to a Probability Measure.- 10 Independent Random Variables.- 11 Probability Distributions on R.- 12 Probability Distributions on Rn.- 13 Characteristic Functions.- 14 Properties of Characteristic Functions.- 15 Sums of Independent Random Variables.- 16 Gaussian Random Variables (The Normal and the Multivariate Normal Distributions).- 17 Convergence of Random Variables.- 18 Weak Convergence.- 19 Weak Convergence and Characteristic Functions.- 20 The Laws of Large Numbers.- 21 The Central Limit Theorem.- 22 L2 and Hilbert Spaces.- 23 Conditional Expectation.- 24 Martingales.- 25 Supermartingales and Submartingales.- 26 Martingale Inequalities.- 27 Martingale Convergence Theorems.- 28 The Radon-Nikodym Theorem.- References.