Jacobson | Finite-Dimensional Division Algebras over Fields | E-Book | sack.de
E-Book

E-Book, Englisch, 284 Seiten, eBook

Jacobson Finite-Dimensional Division Algebras over Fields


1996
ISBN: 978-3-642-02429-0
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, 284 Seiten, eBook

ISBN: 978-3-642-02429-0
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



These algebras determine, by the Sliedderburn Theorem. the semi-simple finite dimensional algebras over a field. They lead to the definition of the Brauer group and to certain geometric objects, the Brauer-Severi varieties. Sie shall be interested in these algebras which have an involution. Algebras with involution arose first in the study of the so-called .'multiplication algebras of Riemann matrices". Albert undertook their study at the behest of Lefschetz. He solved the problem of determining these algebras. The problem has an algebraic part and an arithmetic part which can be solved only by determining the finite dimensional simple algebras over an algebraic number field. We are not going to consider the arithmetic part but will be interested only in the algebraic part. In Albert's classical book (1939). both parts are treated. A quick survey of our Table of Contents will indicate the scope of the present volume. The largest part of our book is the fifth chapter which deals with invo- torial rimple algebras of finite dimension over a field. Of particular interest are the Jordan algebras determined by these algebras with involution. Their structure is determined and two important concepts of these algebras with involution are the universal enveloping algebras and the reduced norm. Of great importance is the concept of isotopy. There are numerous applications of these concepts, some of which are quite old.

Jacobson Finite-Dimensional Division Algebras over Fields jetzt bestellen!

Zielgruppe


Graduate


Autoren/Hrsg.


Weitere Infos & Material


Skew Polynomials and Division Algebras.- Brauer Factor Sets and Noether Factor Sets.- Galois Descent and Generic Splitting Fields.- p-Algebras.- Simple Algebras with Involution.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.