Jackson / Morrell | Machining with Nanomaterials | E-Book | www2.sack.de
E-Book

E-Book, Englisch, 384 Seiten

Jackson / Morrell Machining with Nanomaterials


2. Auflage 2015
ISBN: 978-3-319-19009-9
Verlag: Springer Nature Switzerland
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, 384 Seiten

ISBN: 978-3-319-19009-9
Verlag: Springer Nature Switzerland
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book focuses on the state-of-the-art developments in machining with nanomaterials. Numerous in-depth case studies illustrate the practical use of nanomaterials in industry, including how thin film nanostructures can be applied to solving machining problems and how coatings can improve tool life and reduce machining costs in an environmentally acceptable way. Chapters include discussions on, among other things:Comparisons of re-coated cutting tools and re-ground drillsThe modeling and machining of medical materials, particularly implants, for optimum biocompatibility including corrosion resistance, bio adhesiveness, and elasticityRecent developments in machining difficult-to-cut materials, as well as machining brittle materials using nanostructured diamond toolsSpindle Speed Variation (SSV) for machining chatter suppressionNano grinding with abrasives to produce micro- and nano fluidic devices.The importance of proper design of cutting tools, including milling tools, single point turning tools, and micro cutting tools is reinforced throughout the book. This is an ideal book for engineers in industry, practitioners, students, teachers, and researchers.

Professor Mark J. Jackson, PhD, PD, is the McCune and Middlekauff Foundation Endowed Professor and Academic Department Head at Kansas State University. He has also served as General Chairman of the International Surface Engineering Congress and is Deputy President of the World Academy of Materials and Manufacturing Engineering. Dr. Jackson has also directed, co-directed, and managed research grants, including those funded by The Royal Academy of Engineering (London), Ministry of Defense (London), Atomic Weapons Research Establishment, National Science Foundation, N.A.S.A., and the U.S. Department of Energy, among others. He has organized many conferences and has authored and co-authored over 250 publications in archived journals and refereed conference proceedings and has written and edited books in the area of nanotechnology and manufacturing.Dr. Jonathan S. Morrell, PhD, is a senior chemist and technical manager at the Y-12 National Security Complex in Oak Ridge, Tennessee, and has led the Compatibility and Surveillance Section of the Development Division since 2005. Dr. Morrell currently serves on several coordinated research projects at the International Atomic Energy Agency (IAEA) in Vienna, Austria on lifetime extension of aging research reactors. He is also an adjunct faculty professor in the Department of Chemistry at the University of Tennessee and in the Natural and Behavioral Science Department at Pellissippi State Community College in Knoxville. Dr. Morrell has ten issued patents, authored and co-authored more than 32 publications in archived journals and refereed conference proceedings, authored over 110 formal reports and edited four technical books. He is currently a member of the editorial boards of the International Journal of Molecular Engineering, International Journal of Nano and Biomaterials, and International Journal of Nanoparticles.

Jackson / Morrell Machining with Nanomaterials jetzt bestellen!

Weitere Infos & Material


1;Preface;6
2;Contents;8
3;About the Editors;10
4;Chapter 1: Fundamentals of Machining;13
4.1;1.1 Introduction: Machining Effects;13
4.1.1;1.1.1 Prediction of friction power Angle;17
4.1.2;1.1.2 Plastic Behavior at Large Strains;22
4.1.3;1.1.3 Langford and Cohen´s Model;22
4.1.4;1.1.4 Walker and Shaw´s Model;23
4.1.5;1.1.5 Usui´s Model;24
4.1.6;1.1.6 Saw Tooth Chip Formation;25
4.1.7;1.1.7 Fluid-Like Flow in Chip Formation;26
4.2;1.2 Size Effects in Micromachining;26
4.3;1.3 Nanomachining;27
4.3.1;1.3.1 Nanometric Machining;28
4.3.2;1.3.2 Theoretical Basis of Nanomachining;29
4.3.2.1;1.3.2.1 Cutting Force and Energy;29
4.3.2.2;1.3.2.2 Cutting Temperatures;31
4.3.2.3;1.3.2.3 Chip Formation;33
4.3.2.4;1.3.2.4 Minimum Undeformed Chip Thickness;35
4.3.2.5;1.3.2.5 Critical Cutting Radius;36
4.3.2.6;1.3.2.6 Workpiece Materials;37
4.3.3;1.3.3 Comparison of Nanometric Machining and Conventional Machining;39
4.4;1.4 Recent Developments in Machining Simulations;40
4.4.1;1.4.1 Complete 3D Surface Machining Simulation;40
4.4.2;1.4.2 Consideration of Fluids in MD Cutting Simulation;41
4.5;References;45
5;Chapter 2: Machining Stability;48
5.1;2.1 Introduction;48
5.2;2.2 Phase Difference and Machining Stability: A Physical Interpretation;50
5.3;2.3 Sensitivity Analysis of the Phase Difference of Machining Chatter;52
5.4;2.4 Verification of the Stability Criterion;56
5.5;2.5 Conclusions;63
5.6;Derivation of the Stability Criterion with the Phase Difference Sensitivity;63
5.7;References;65
6;Chapter 3: Machining Chatter Suppression;66
6.1;3.1 Introduction;66
6.2;3.2 Nonlinear Machining Chatter Model;69
6.3;3.3 Characteristic Equation of SSV Cutting;70
6.3.1;3.3.1 Equivalently Linearized Differential Equation;70
6.3.2;3.3.2 Time Delay of SSV Cutting;71
6.3.3;3.3.3 Characteristic Equation;72
6.4;3.4 Stability Increment by SSV Cutting;73
6.5;3.5 Determination of Stability Increment Index;75
6.6;3.6 Selecting SSV Amplitude from Energy Analysis;77
6.6.1;3.6.1 Preliminary Procedure of Selecting SSV Amplitudes;78
6.6.2;3.6.2 Bessel Function Values and Their Profile Curves;79
6.6.3;3.6.3 Selecting SSV Amplitude;81
6.6.3.1;3.6.3.1 Industrial Example;81
6.7;3.7 Conclusions;82
6.8;References;85
7;Chapter 4: Micromachining from a Materials Perspective;87
7.1;4.1 Machining Theory;87
7.2;4.2 High-Speed Machining;95
7.3;4.3 Cutting Tool Wear;102
7.4;4.4 Tool Coatings;109
7.5;4.5 Micromachining;124
7.6;4.6 Research Directions;132
7.7;References;133
8;Chapter 5: Machining of Brittle Materials Using Nanostructured Diamond Tools;138
8.1;5.1 Introduction;138
8.2;5.2 Mechanisms of Tool Wear;139
8.3;5.3 Machining Simulations;143
8.4;5.4 Experimental Methods;147
8.5;5.5 Experimental Results and Discussion;154
8.5.1;5.5.1 Film Characterization;154
8.5.2;5.5.2 Wear Mechanisms;156
8.5.2.1;5.5.2.1 Crater Wear and Notching Wear;156
8.5.2.2;5.5.2.2 Flank Wear;157
8.5.2.3;5.5.2.3 Cutting Forces and Friction Coefficient;160
8.6;5.6 Conclusions;161
8.7;References;162
9;Chapter 6: Analysis of Contact of Chip and Tool Using Nanostructured Coated Cutting Tools;163
9.1;6.1 Introduction;163
9.2;6.2 Computational Analysis of Machining Conditions;164
9.2.1;6.2.1 Loewen and Shaw´s Method to Calculating Cutting Temperatures;164
9.3;6.3 Finite Element Studies of Machining Conditions;175
9.4;6.4 Discussion;177
9.5;6.5 Conclusions;181
9.6;References;182
10;Chapter 7: Economic Analysis of Machining with Nanostructured Coatings;184
10.1;7.1 Introduction;184
10.2;7.2 Experimental Apparatus;188
10.3;7.3 Experimental Results;188
10.3.1;7.3.1 Cutting Tool Wear;188
10.3.2;7.3.2 Volume Removed as a Function of Flank Wear;191
10.3.3;7.3.3 Summary of Experimental Results;193
10.4;7.4 Cutting Tool Life;195
10.4.1;7.4.1 Determination of Exponents;196
10.4.2;7.4.2 Determination of the Constant;199
10.5;7.5 Economic Analysis;200
10.6;7.6 Discussion;202
10.7;7.7 Conclusions;206
10.8;References;206
11;Chapter 8: Analysis of Machining Hardened Steels Using Coated Cutting Tools;207
11.1;8.1 Introduction;207
11.2;8.2 Computational Understanding of Various Machining Conditions;208
11.2.1;8.2.1 Properties of D2 Tool Steel;208
11.2.2;8.2.2 Loewen and Shaw´s Method Applied to Calculating Temperature;208
11.3;8.3 Finite Element Studies of Machining Conditions;220
11.4;8.4 Discussion;223
11.5;8.5 Conclusions;234
11.6;References;235
12;Chapter 9: Modeling and Machining of Medical Materials;237
12.1;9.1 Introduction: Material Requirements for the Biomedical Industry;238
12.1.1;9.1.1 Properties of Titanium Alloys;239
12.1.2;9.1.2 Classification of Ti Alloys;240
12.1.3;9.1.3 Biomedical Applications of Ti Alloys;244
12.2;9.2 Material Models;244
12.2.1;9.2.1 Johnson-Cook Model (J-C);245
12.2.2;9.2.2 Mechanical Threshold Model (MTS);246
12.2.3;9.2.3 Power Law Model;247
12.2.4;9.2.4 Zerilli and Armstrong Model;247
12.2.5;9.2.5 Japanese Model;248
12.2.6;9.2.6 Bammann, Chiesa, and Johnson Model;248
12.2.7;9.2.7 The Applied Model;249
12.3;9.3 Machining of Titanium Alloys;251
12.3.1;9.3.1 Micro-milling;259
12.3.1.1;9.3.1.1 The Size Effect;260
12.3.1.2;9.3.1.2 Minimum Chip Thickness;264
12.3.1.3;9.3.1.3 Computational Analysis;267
12.4;9.4 Conclusions;274
12.5;References;274
13;Chapter 10: Manufacture and Development of Nanostructured Diamond Tools;278
13.1;10.1 Introduction;278
13.2;10.2 Analysis of Stress in a Loaded Wedge;280
13.3;10.3 Stress Analysis in a Wedge with a Distributed Load;286
13.3.1;10.3.1 Development of Wear Model;289
13.3.2;10.3.2 Computational Stress Analysis of Single Diamond Grains;290
13.4;10.4 Experimental Methods;292
13.4.1;10.4.1 Hot Filament CVD;292
13.4.2;10.4.2 Measurement of Wear of Diamond Tools;293
13.5;10.5 Discussion;294
13.5.1;10.5.1 Diamond Deposition;294
13.5.2;10.5.2 Wear of Diamonds;298
13.6;10.6 Conclusions;301
13.7;References;302
14;Chapter 11: Comparison of Original and Re-coated Cutting Tools Machining Steel;304
14.1;11.1 Introduction;304
14.2;11.2 Experimental Methods;306
14.2.1;11.2.1 Materials;306
14.2.2;11.2.2 Cutting Tools;307
14.2.3;11.2.3 Machining Center;307
14.2.4;11.2.4 Cutting Fluid;309
14.2.5;11.2.5 Experimental Strategy;310
14.3;11.3 Experimental Results and Discussions;313
14.3.1;11.3.1 Tool Wear;313
14.3.1.1;11.3.1.1 TiAlN Coated Drills;313
14.3.1.2;11.3.1.2 AlCrN Coated Drills;315
14.3.2;11.3.2 Thrust Force and Torque;317
14.3.2.1;11.3.2.1 TiAlN Coated Drills;317
14.3.2.2;11.3.2.2 AlCrN Coated Drills;321
14.3.2.3;11.3.2.3 Comparison Between Coatings;322
14.4;11.4 Conclusions;324
14.5;References;325
15;Chapter 12: Multi-objective Optimization of Cutting Conditions When Turning Aluminum Alloys (1350-O and 7075-T6 Grades) Using ...;327
15.1;12.1 Introduction;328
15.2;12.2 Experimental;330
15.2.1;12.2.1 Microstructure and Mechanical Properties of the Aluminum Alloys;330
15.2.2;12.2.2 Machining Operations;331
15.2.3;12.2.3 The CCD Treatment;332
15.3;12.3 Results and Discussion;332
15.3.1;12.3.1 Microstructure of Types 1350-O and 7075-T6 Aluminum Alloy;332
15.3.2;12.3.2 Hardness and Tensile Test Data of Types 1350-O and 7075-T6 Aluminum Alloys;333
15.3.3;12.3.3 The CCD Machining Test Data and Regression Analysis;333
15.3.4;12.3.4 Chip Characteristics and Chip Thickness Ratio: CTR Results;336
15.3.5;12.3.5 Genetic Algorithm Multi-objective (Fu and CTR) Optimization for Types 1350-O and 7075-T6 Aluminum Alloy;338
15.3.6;12.3.6 Validation of the Method;339
15.3.7;12.3.7 Surface Responses and Level Curves of the Machining Force and Chip Thickness Ratio Models;341
15.4;12.4 Conclusions;347
15.5;References;348
16;Chapter 13: Nanogrinding with Abrasives;351
16.1;13.1 Introduction;351
16.2;13.2 Nanogrinding with Coated Piezoelectric Materials;352
16.3;13.3 Practical Nanogrinding;354
16.3.1;13.3.1 Nanogrinding Machine;354
16.3.2;13.3.2 Nanogrinding Procedure;355
16.3.3;13.3.3 Nanogrinding Results;357
16.4;13.4 Laser Texturing of Abrasive Materials;359
16.4.1;13.4.1 Texturing Procedure;361
16.4.1.1;13.4.1.1 Measurement of Texturing Temperature;361
16.4.1.2;13.4.1.2 Orientation Imaging Microscopy;361
16.4.1.3;13.4.1.3 Nanogrinding Practice;362
16.4.2;13.4.2 Experimental Results and Discussion;363
16.4.2.1;13.4.2.1 Laser Texturing Temperature;363
16.4.2.2;13.4.2.2 Orientation Imaging Microscopy of Laser-Dressed Materials;367
16.4.2.3;13.4.2.3 Nanogrinding Practice;369
16.5;13.5 Discussion;371
16.6;References;372
17;Index;374



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.