E-Book, Englisch, Band 34, 810 Seiten, eBook
Reihe: Intelligent Systems, Control and Automation: Science and Engineering
Ivancevic Complex Dynamics
2007
ISBN: 978-1-4020-6412-8
Verlag: Springer Netherland
Format: PDF
Kopierschutz: 1 - PDF Watermark
Advanced System Dynamics in Complex Variables
E-Book, Englisch, Band 34, 810 Seiten, eBook
Reihe: Intelligent Systems, Control and Automation: Science and Engineering
ISBN: 978-1-4020-6412-8
Verlag: Springer Netherland
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
1 Introduction
1.1 Why Complex Dynamics ?
1.2 Preliminaries: Basics of Complex Numbers and Variables
1.2.1 Complex Numbers and Vectors
1.2.2 Complex Functions
1.2.3 Unit Circle and Riemann Sphere
1.3 Soft Introduction to Quantum Dynamics
1.3.1 Complex Hilbert Space 2 Nonlinear Dynamics in the Complex Plane
2.1 Complex Continuous Dynamics
2.1.1 Complex Nonlinear ODEs
2.1.2 Numerical Integration of Complex ODEs
2.1.3 Complex Hamiltonian Dynamics
2.1.4 Dissipative Dynamics with Complex Hamiltonians
2.1.5 Classical Trajectories for Complex Hamiltonians
2.2 Complex Chaotic Dynamics: Discrete and Symbolic
2.2.1 Basic Fractals and Biomorphs
2.2.2 Mandelbrot Set
2.2.3 Hénon Maps
2.2.4 Smale Horseshoes 3 Complex Quantum Dynamics
3.1 Non–Relativistic Quantum Mechanics
3.1.1 Dirac’s Canonical Quantization
3.1.2 Quantum States and Operators
3.1.3 Quantum Pictures
3.1.4 Spectrum of a Quantum Operator
3.1.5 General Representation Model
3.1.6 Direct Product Space
3.1.7 State–Space for n Quantum Particles
3.2 Relativistic Quantum Mechanics and Electrodynamics
3.2.1 Difficulties of the Relativistic Quantum Mechanics
3.2.2 Particles of Half–Odd Integral Spin
3.2.3 Particles of Integral Spin
3.2.4 Dirac’s Electrodynamics Action Principle 4 Complex Manifolds
4.1 Smooth Manifolds
4.1.1 Intuition and Definition of a Smooth Manifold
4.1.2 (Co)Tangent Bundles of a Smooth Manifold
4.1.3 Lie Derivatives, Lie Groups and Lie Algebras
4.1.4 Riemannian, Finsler and Symplectic Manifolds
4.1.5 Hamilton–Poisson Geometry and Human Biodynamics
4.2 Complex Manifolds
4.2.1 Complex Metrics: Hermitian and Kähler
4.2.2 Dolbeault Cohomology and Hodge Numbers
4.3 Basics of Kähler Geometry
4.3.1 The Kähler Ricci Flow
4.3.2 Kähler Orbifolds
4.3.3 Kähler Ricci Flow on Kähler–EinsteinOrbifolds
4.3.4 Induced Evolution Equations
4.4 Conformal Killing–Riemannian Geometry
4.4.1 Conformal Killing Vector–Fields and Forms on M
4.4.2 Conformal Killing Tensors and Laplacian Symmetry on M
4.5 Stringy Manifolds
4.5.1 Calabi–Yau Manifolds
4.5.2 Orbifolds
4.5.3 Mirror Symmetry
4.5.4 String Theory in ‘Plain English’ 5 Nonlinear Dynamics on Complex Manifolds
5.1 Gauge Theories
5.1.1 Classical Gauge Theory
5.2 Monopoles
5.2.1 Monopoles in R3
5.2.2 Spectral Curve
5.2.3 Twistor Theory of Monopoles
5.2.4 Nahm Transform and Nahm Equations
5.3 Hermitian Geometry and Complex Relativity
5.3.1 About Space–Time Complexification
5.3.2 Hermitian Geometry
5.3.3 Invariant Action
5.4 Gradient Kähler Ricci Solitons
5.4.1 Introduction
5.4.2 Associated Holomorphic Quantities
5.4.3 Potentials and Local Generality
5.5 Monge–Ampère Equations
5.5.1 Monge–Ampère Equations and Hitchin Pairs
5.5.2 The @-Operator
5.6 Quantum Mechanics Viewed as a Complex Structure on a Classical Phase Space
5.6.1 Introduction
5.6.2 Varying the Vacuum
5.6.3 Kähler Manifolds as Classical Phase Spaces
5.6.4 Complex–Structure Deformations
5.6.5 Kähler Deformations
5.6.6 Dynamics on Kähler Spaces
5.6.7 Interpretations
5.7 Geometric Quantization
5.7.1 Quantization of Ordinary Hamiltonian Mechanics
5.7.2 Quantization of Relativistic Hamiltonian Mechanics
5.8 K-Theory and Complex Dynamics
5.8.1 Topological K-Theory
5.8.2 Algebraic K-Theory
5.8.3 Chern Classes and Chern Character
5.8.4 Atiyah’s View on K-Theory
5.8.5 Atiyah–Singer Index Theorem
5.8.6 The Infinite–Order Case
5.8.7 Twisted K-Theory and the Verlinde Algebra
5.8.8 Stringy and Brane Dynamics via K-Theory
5.9 Self–Similar Liouville Neurodynamics 6 Path Integrals and Complex Dynamics
6.1 Path Integrals: Sums Over