Iterative Lösung großer schwachbesetzter Gleichungssysteme | Buch | 978-3-519-12372-9 | sack.de

Buch, Deutsch, Band 69, 404 Seiten, Format (B × H): 140 mm x 216 mm, Gewicht: 516 g

Reihe: Leitfäden der angewandten Mathematik und Mechanik - Teubner Studienbücher

Iterative Lösung großer schwachbesetzter Gleichungssysteme


2.Auflage 1993
ISBN: 978-3-519-12372-9
Verlag: Vieweg+Teubner Verlag

Buch, Deutsch, Band 69, 404 Seiten, Format (B × H): 140 mm x 216 mm, Gewicht: 516 g

Reihe: Leitfäden der angewandten Mathematik und Mechanik - Teubner Studienbücher

ISBN: 978-3-519-12372-9
Verlag: Vieweg+Teubner Verlag


die Vorlesung 'Numerische Mathemati 11' empfehlenswert.

Iterative Lösung großer schwachbesetzter Gleichungssysteme jetzt bestellen!

Zielgruppe


Upper undergraduate

Weitere Infos & Material


Notationen.- 1 Einleitung.- 1.1 Historische Bemerkungen zu Iterationsverfahren.- 1.2 Das Modellproblem (Poisson-Gleichune).- 1.3 Aufwand ft direkte Lösung des Gleichungssystems.- 1.4 Beispiele für iterative Verfahren.- 2 Grundlagen aus der Linearen Algebra.- 2.1 Bezeichnungen für Vektoren und Matrizen.- 2.2 Lineare Gleichungssysteme.- 2.3 Permutationsmatrizen.- 2.4 Eigenwerte und Eigenvektoren.- 2.5 Blockvektoren, Blockmatrizen.- 2.6 Normen.- 2.7 Skalarprodukt.- 2.8 Normalformen.- 2.9 Zusammenhang zwischen Normen und Spektralradius.- 2.10 Positiv definite Matrizen.- 3 Allgemeines zu iterativen Verfahren.- 3.1 Allgemeine Aussagen zur Konvergenz.- 3.2 Lineare Iterationsverfahren.- 3.3 Effektivität von Iterationsverfahren.- 3.4 Test iterativer Verfahren.- 3.5 Erläuterungen zu den Pascal-Prozeduren.- 4 Jacobi-, Gauß-Seidel- und SOR-Verfahren im positiv definiten Fall.- 4.1 Eigenwertanalyse des Modellproblems.- 4.2 Konstruktion der Iterationsverfahren.- 4.3 Gedämpfte bzw extrapolierte Iterationsverfahren.- 4.4 Konvergenzuntersuchung.- 4.5 Blockversionen.- 4.6 Aufwand der Verfahren.- 4.7 Konvergenzraten im Falle des Modellproblems.- 4.8 Symmetrische Verfahren.- 5. Analyse im 2-zyklischen Fall.- 5.1 Die 2-zyklischen Matrizen.- 5.2 Vorbereitende Lemmata.- 5.3 Analyse der Richardson-Iteration.- 5.4 Analyse des Jacobi-Verfahrens.- 5.5 Analyse der Gauß-Seidel-Iteration.- 5.6 Analyse des SOR-Verfahrens.- 5.7 Anwendung auf das Modellproblem.- 5.8 Ergänzungen.- 6 Analyse für M-Matrizen.- 6.1 Positive Matrizen.- 6.2 Graph einer Matrix und irreduzible Matrizen.- 6.3 Perron-Frobenius-Theorie positiver Matrizen.- 6.4 M-Matrizen.- 6.5 Reguläre Aufspaltuneen.- 6.6 Anwendungen.- 7 Semiiterative Verfahren.- 7.1 Erste Formulierung.- 7.2 Zweite Formulierung semiiterativerVerfahren.- 7.3 Ontinale Pn1vnnn.- 7.4 Anwendung auf bekannte Iterationen.- 7.5 Verfahren der alternierenden Richtungen (ADI).- 8 Transformationen, sekundäre Iterationen, unvollständige Dreieckszerlegungen.- 8.1 Erzeugung von Iterationen durch Transformatinnen.- 8.2 Die Kaczmarz-Iteration.- 8.3 Präkonditionierung.- 8.4 Sekundäre Iterationen.- 8.5 Unvollständige Dreieckszerlegungen.- 8.6 Ein überflüssiger Begriff: Zeitschrittverfahren.- 9 Verfahren der konjugierten Gradienten.- 9.1 Lineare Gleichungssysteme als Minimierungsaufgabe.- 9.2 Gradientenverfahren.- 9.3 Methode der konjugierten Richtungen.- 9.4 Methode der konjugierten Gradienten.- 9.5 Verallgemeinerungen.- 10 Mehrgitteriterationen.- 10.1 Einfihrung.- 10.2 Das Zweigitterverfahren.- 10.3 Analyse für ein eindimensionales Beispiel.- 10.4 Mehrgitteriteration.- 10.5 Geschachtelte Iteration.- 10.6 Konvergenzanalyse.- 10.7 Symmetrische Mehrgitterverfahren.- 10.8 Kombination von Mehrgitter- mit semiiterativen Verfahren.- 10.9 Anmerkungen.- 11 Gebietszerlegungsmethoden.- 11.1 Allgemeines.- 11.2 Formulierung der Gebietszerlegungsmethode.- 11.3 Eigenschaften der additiven Schwarz-Iteration.- 11.4 Analyse der multiplikativen Schwarz-Iteration.- 11.5 Beispiele.- 11.6 Mehrgitterverfahren als Unterraumzerlegung.- 11.7 Schur-Komplement-Methoden.- Stichwortverzeichnis.- Verzeichnis der Pascal-Namen.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.