E-Book, Deutsch, Englisch, 550 Seiten, PDF, Format (B × H): 170 mm x 240 mm
Reihe: Science of Synthesis
E-Book, Deutsch, Englisch, 550 Seiten, PDF, Format (B × H): 170 mm x 240 mm
Reihe: Science of Synthesis
ISBN: 978-3-13-178661-6
Verlag: Thieme
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
Content of this volume: Aryl Grignard Reagents, Magnesium Halides, Magnesium Halides, Magnesium Oxide, Alkoxides, and Carboxylates, Magnesium Amides, Oxazoles, Acyclic and Semicyclic O/O Acetals, 1,3-Dioxetanes and 1,3-Dioxolanes, Spiroketals, Glycosyl Oxygen Compounds (Di- and Oligosaccharides), Oligosaccharides, Acyclic Hemiacetals, Lactols, and Carbonyl Hydrates, Acyclic Hemiacetals, Lactols, and Carbonyl Hydrates.
Zielgruppe
Wissenschaftler
Autoren/Hrsg.
Weitere Infos & Material
1;Science of Synthesis: Knowledge Updates 2010/3;1
1.1;Title page;5
1.2;Imprint;7
1.3;Preface;8
1.4;Abstracts;10
1.5;Overview;16
1.6;Table of Contents;18
1.7;Volume 7: Compounds of Groups 13 and 2 (Al, Ga, In, Tl, Be ··· Ba);28
1.7.1;7.6 Product Class 6: Magnesium Compounds;28
1.7.1.1;7.6.5.6 Aryl Grignard Reagents;28
1.7.1.1.1;7.6.5.6.1 Method 1: Synthesis by Reaction of Aryl Halides and Magnesium in the Presence of Lithium Chloride;28
1.7.1.1.2;7.6.5.6.2 Method 2: Synthesis by Halogen–Magnesium Exchange with Alkyl Grignard Reagents;29
1.7.1.1.2.1;7.6.5.6.2.1 Variation 1: Synthesis by Halogen–Magnesium Exchange with Lithium Triorganomagnesates;30
1.7.1.1.3;7.6.5.6.3 Method 3: Synthesis by Deprotonative ortho-Magnesiation;31
1.7.1.1.4;7.6.5.6.4 Method 4: Application to Synthesis of Biaryls by Dimerization;32
1.7.1.1.5;7.6.5.6.5 Method 5: Application to Synthesis of Amines;33
1.7.1.1.6;7.6.5.6.6 Method 6: Application to Addition to C--C Multiple Bonds Bearing a Directing Group;34
1.7.1.1.7;7.6.5.6.7 Method 7: Application to Transmetalations with Metal Halides;34
1.7.1.1.8;7.6.5.6.8 Method 8: Application to Addition to Carbonyl Compounds;35
1.7.1.1.8.1;7.6.5.6.8.1 Variation 1: Highly Efficient Addition of Lithium Triphenylmagnesate to Benzophenone;35
1.7.1.1.8.2;7.6.5.6.8.2 Variation 2: Zinc(II)-Catalyzed Addition of Aryl Grignard Reagents to Carbonyl Species;35
1.7.1.2;7.6.10.9 Alkyl Grignard Reagents;38
1.7.1.2.1;7.6.10.9.1 Method 1: Synthesis by Halogen–Magnesium Exchange;38
1.7.1.2.1.1;7.6.10.9.1.1 Variation 1: Synthesis by Sulfoxide–Magnesium Exchange;41
1.7.1.2.2;7.6.10.9.2 Method 2: Synthesis by Carbomagnesiation of C--C Multiple Bonds;42
1.7.1.2.3;7.6.10.9.3 Method 3: Application to Addition to Carbonyl Compounds;43
1.7.1.2.3.1;7.6.10.9.3.1 Variation 1: Highly Efficient Addition of Lithium Trialkylmagnesates to Acetophenone;43
1.7.1.2.3.2;7.6.10.9.3.2 Variation 2: Zinc(II)-Catalyzed Addition of Alkyl Grignard Reagents to Carbonyl Groups;44
1.7.1.3;7.6.12.13 Magnesium Halides;48
1.7.1.3.1;7.6.12.13.1 Method 1: Applications of Magnesium Fluoride;48
1.7.1.3.1.1;7.6.12.13.1.1 Variation 1: Magnesium Fluoride Catalyzed Knoevenagel Reactions;48
1.7.1.3.1.2;7.6.12.13.1.2 Variation 2: Magnesium Fluoride/Chiral Phosphoric Acid Catalyzed Friedel–Crafts Reactions;49
1.7.1.3.2;7.6.12.13.2 Method 2: Applications of Magnesium Chloride as a Lewis Acid;49
1.7.1.3.2.1;7.6.12.13.2.1 Variation 1: Magnesium Chloride Promoted Claisen Reactions;50
1.7.1.3.2.2;7.6.12.13.2.2 Variation 2: Magnesium Chloride/Potassium Borohydride Promoted Reductions;50
1.7.1.3.3;7.6.12.13.3 Method 3: Applications of Other Magnesium Halides as Lewis Acids;51
1.7.1.3.3.1;7.6.12.13.3.1 Variation 1: Reaction of Organometallics in the Presence of Magnesium Bromide;51
1.7.1.3.3.2;7.6.12.13.3.2 Variation 2: Magnesium Halide Promoted Dipolar Cycloaddition Reactions;52
1.7.1.3.4;7.6.12.13.4 Method 4: Applications of Magnesium Halide/Base Systems to Enolate Formation and Subsequent Addition Reactions;52
1.7.1.3.5;7.6.12.13.5 Method 5: Applications of Magnesium Halides in Morita–Baylis–Hillman Reactions;53
1.7.1.3.6;7.6.12.13.6 Method 6: Applications of Magnesium Iodide in Ring-Expansion Reactions;55
1.7.1.4;7.6.13.17 Magnesium Oxide, Alkoxides, and Carboxylates;58
1.7.1.4.1;7.6.13.17.1 Method 1: Applications of Magnesium Oxide;58
1.7.1.4.2;7.6.13.17.2 Method 2: Applications of Magnesium Methoxide as a Base;59
1.7.1.4.3;7.6.13.17.3 Method 3: Applications of Magnesium Alkoxides to the Oppenauer Oxidation;60
1.7.1.4.4;7.6.13.17.4 Method 4: Applications of Magnesium Alkoxides in Diastereo- and Enantioselective Reactions;61
1.7.1.4.5;7.6.13.17.5 Method 5: Applications of Magnesium Alkoxides in Elimination Reactions;62
1.7.1.4.6;7.6.13.17.6 Method 6: Applications of Magnesium Carboxylates;64
1.7.1.4.7;7.6.13.17.7 Method 7: Applications of Magnesium Monoperoxyphthalate;65
1.7.1.5;7.6.14 Product Subclass 14: Magnesium Amides;68
1.7.1.5.1;Synthesis of Product Subclass 14;68
1.7.1.5.1.1;7.6.14.1 Method 1: Synthesis of Methylmagnesium N-Cyclohexyl-N-isopropylamide;68
1.7.1.5.1.2;7.6.14.2 Method 2: Synthesis of (2,2,6,6-Tetramethylpiperidino)magnesium Chloride–Lithium Chloride Complex;69
1.7.1.5.1.3;7.6.14.3 Method 3: Synthesis of Magnesium Bis(diisopropylamide);69
1.7.1.5.1.4;7.6.14.4 Method 4: Synthesis of Magnesium Bis(2,2,6,6-tetramethylpiperidide);70
1.7.1.5.1.4.1;7.6.14.4.1 Variation 1: Synthesis of Magnesium Bis(2,2,6,6-tetramethylpiperidide)–Bis(lithium chloride) Complex;70
1.7.1.5.1.5;7.6.14.5 Method 5: Synthesis of Other Magnesium Bis(amide)s;71
1.7.1.5.1.6;7.6.14.6 Method 6: Synthesis of Chiral Magnesium Bis(dialkylamide)s;71
1.7.1.5.2;Applications of Product Subclass 14 in Organic Synthesis;72
1.7.1.5.2.1;7.6.14.7 Method 7: Reactions Involving Methylmagnesium N-Cyclohexyl-N-isopropylamide;72
1.7.1.5.2.2;7.6.14.8 Method 8: Reactions Involving (Diisopropylamino)magnesium Bromide;73
1.7.1.5.2.3;7.6.14.9 Method 9: Reactions Involving (2,2,6,6-Tetramethylpiperidino)magnesium Chloride–Lithium Chloride Complex;73
1.7.1.5.2.4;7.6.14.10 Method 10: Reactions Involving Magnesium Bis(diisopropylamide);75
1.7.1.5.2.5;7.6.14.11 Method 11: Reactions Involving Magnesium Bis(2,2,6,6-tetramethylpiperidide);76
1.7.1.5.2.6;7.6.14.12 Method 12: Reactions Involving Magnesium Bis(2,2,6,6-tetramethylpiperidide)–Bis(lithium chloride) Complex;78
1.7.1.5.2.7;7.6.14.13 Method 13: Reactions Involving Other Magnesium Bis(amide)s;79
1.7.1.5.2.8;7.6.14.14 Method 14: Reactions Involving Chiral Magnesium Bis(dialkylamide)s;80
1.8;Volume 11: Five-Membered Hetarenes with One Chalcogen and One Additional Heteroatom;84
1.8.1;11.12 Product Class 12: Oxazoles;84
1.8.1.1;11.12.5 Oxazoles;84
1.8.1.1.1;11.12.5.1 Synthesis by Ring-Closure Reactions;85
1.8.1.1.1.1;11.12.5.1.1 By Formation of One O--C and One N--C Bond;85
1.8.1.1.1.1.1;11.12.5.1.1.1 Fragments O--C--N and C--C;85
1.8.1.1.1.1.1.1;11.12.5.1.1.1.1 Method 1: From Vinyl Halides and Amides;85
1.8.1.1.1.1.2;11.12.5.1.1.2 Fragments O--C--C and C--N;87
1.8.1.1.1.1.2.1;11.12.5.1.1.2.1 Method 1: From Carbonyl Compounds and Nitriles;87
1.8.1.1.1.1.2.2;11.12.5.1.1.2.2 Method 2: From Acylcarbenes and Nitriles;92
1.8.1.1.1.1.2.3;11.12.5.1.1.2.3 Method 3: From Benzylamines and 1,3-Dicarbonyl Compounds;95
1.8.1.1.1.1.2.4;11.12.5.1.1.2.4 Method 4: From Amides and Propargylic Alcohols;96
1.8.1.1.1.1.3;11.12.5.1.1.3 Fragments N--C--C and C--O;97
1.8.1.1.1.1.3.1;11.12.5.1.1.3.1 Method 1: From 2-Amino-1-bromoethanesulfonamide and Acid Chlorides;97
1.8.1.1.1.1.4;11.12.5.1.1.4 Fragments O--C--C--N and C;99
1.8.1.1.1.1.4.1;11.12.5.1.1.4.1 Method 1: From Nitroethanones and Orthobenzoate;99
1.8.1.1.1.1.4.2;11.12.5.1.1.4.2 Method 2: From a-Cyano-ß-hydroxy Enamines and Orthoformate;100
1.8.1.1.1.2;11.12.5.1.2 By Formation of One O--C and One C--C Bond;101
1.8.1.1.1.2.1;11.12.5.1.2.1 Fragments C--N--C and C--O;101
1.8.1.1.1.2.1.1;11.12.5.1.2.1.1 Method 1: From Isocyanides and Acyl Chlorides;101
1.8.1.1.1.3;11.12.5.1.3 By Formation of One O--C Bond;103
1.8.1.1.1.3.1;11.12.5.1.3.1 Fragment O--C--N--C--C;103
1.8.1.1.1.3.1.1;11.12.5.1.3.1.1 Method 1: Cyclodehydration of a-Acylamino Aldehydes or Ketones;103
1.8.1.1.1.3.1.2;11.12.5.1.3.1.2 Method 2: From (Acylamino)acetaldehyde Dimethyl Acetals;105
1.8.1.1.1.3.1.3;11.12.5.1.3.1.3 Method 3: From Oxazolones via Friedel–Crafts Acylation and Subsequent Cyclization;106
1.8.1.1.1.3.1.4;11.12.5.1.3.1.4 Method 4: Oxazoles from N-Propargylamides;107
1.8.1.1.1.3.1.5;11.12.5.1.3.1.5 Method 5: From Enamides;120
1.8.1.1.1.3.1.6;11.12.5.1.3.1.6 Method 6: From Amides and Diazocarbonyl Compounds;122
1.8.1.1.1.3.2;11.12.5.1.3.2 Fragment O--C--C--N--C;124
1.8.1.1.1.3.2.1;11.12.5.1.3.2.1 Method 1: Oxidative Cyclization of Schiff Bases Derived from Glycine Methyl Ester;124
1.8.1.1.1.3.2.2;11.12.5.1.3.2.2 Method 2: From Isocyanoacetamides and Imines;124
1.8.1.1.1.3.2.3;11.12.5.1.3.2.3 Method 3: Trifluoromethanesulfonic Anhydride Mediated Cyclocondensation of N-Acyl Amino Acid Esters;126
1.8.1.1.1.3.2.4;11.12.5.1.3.2.4 Method 4: From Aldehydes and Isocyanides;127
1.8.1.1.2;11.12.5.2 Aromatization;129
1.8.1.1.2.1;11.12.5.2.1 Method 1: By Dehydrogenation of Dihydrooxazoles;129
1.8.1.1.2.2;11.12.5.2.2 Method 2: Elimination of Hydrogen Chloride from Dihydrooxazoles;130
1.8.1.1.3;11.12.5.3 Synthesis by Substituent Modification;131
1.8.1.1.3.1;11.12.5.3.1 Substitution Reactions;131
1.8.1.1.3.1.1;11.12.5.3.1.1 Method 1: Reactions of Metalated Oxazoles with Electrophiles;131
1.8.1.1.3.1.2;11.12.5.3.1.2 Method 2: Oxazoles via Substitution of Leaving Groups through Transition-Metal-Catalyzed Reactions;137
1.8.1.1.3.1.3;11.12.5.3.1.3 Method 3: Coupling Reactions of Oxazolones;140
1.8.1.1.4;11.12.5.4 Applications of Oxazoles in Organic Synthesis;141
1.9;Volume 29: Acetals: Hal/X and O/O, S, Se, Te;148
1.9.1;29.6 Product Class 6: Acyclic and Semicyclic O/O Acetals;148
1.9.1.1;29.6.2 Acyclic and Semicyclic O/O Acetals;148
1.9.1.1.1;29.6.2.1 Synthesis from Compounds of Higher Oxidation State;148
1.9.1.1.1.1;29.6.2.1.1 Method 1: Synthesis by Cycloaddition of Ketene Acetals;148
1.9.1.1.1.1.1;29.6.2.1.1.1 Variation 1: From Ketene Acetals and Alkenes via Cycloaddition;148
1.9.1.1.1.1.2;29.6.2.1.1.2 Variation 2: From Ketene Acetals and Alkynes via Cycloaddition;149
1.9.1.1.2;29.6.2.2 Synthesis from Compounds of the Same Oxidation State;149
1.9.1.1.2.1;29.6.2.2.1 Method 1: Synthesis from Hal/OR Acetals;149
1.9.1.1.2.2;29.6.2.2.2 Method 2: Synthesis from Aldehydes or Ketones and Alcohols;150
1.9.1.1.2.2.1;29.6.2.2.2.1 Variation 1: From Alcohols without Removal of Water;151
1.9.1.1.2.2.2;29.6.2.2.2.2 Variation 2: From Alcohols with Removal of Water by Physical Methods;153
1.9.1.1.2.2.3;29.6.2.2.2.3 Variation 3: From Alcohols with Removal of Water by Chemical Means;153
1.9.1.1.2.2.4;29.6.2.2.2.4 Variation 4: From Hemiacetals and Alkylating Agents;155
1.9.1.1.2.2.5;29.6.2.2.2.5 Variation 5: From Alcohols and Alkenyl Ketones;155
1.9.1.1.2.3;29.6.2.2.3 Method 3: Synthesis from Aldehydes or Ketones and Alcohol Derivatives;155
1.9.1.1.2.3.1;29.6.2.2.3.1 Variation 1: From Trialkyl Orthoformates;156
1.9.1.1.2.3.2;29.6.2.2.3.2 Variation 2: From Other Acetals;158
1.9.1.1.2.4;29.6.2.2.4 Method 4: Synthesis from Other O/O Acetals;158
1.9.1.1.2.4.1;29.6.2.2.4.1 Variation 1: By Exchange of Both Alkoxy Groups;158
1.9.1.1.2.4.2;29.6.2.2.4.2 Variation 2: By Exchange of One Alkoxy Group;159
1.9.1.1.2.5;29.6.2.2.5 Method 5: Synthesis from Acetals with Other Heteroatoms;163
1.9.1.1.2.5.1;29.6.2.2.5.1 Variation 1: From O/Se Acetals;163
1.9.1.1.2.5.2;29.6.2.2.5.2 Variation 2: From S/S Acetals;164
1.9.1.1.2.6;29.6.2.2.6 Method 6: Synthesis from Oximes;164
1.9.1.1.2.7;29.6.2.2.7 Method 7: Synthesis from Heterosubstituted Alkenes;164
1.9.1.1.2.7.1;29.6.2.2.7.1 Variation 1: From Acyclic Enol Ethers and Alcohols;165
1.9.1.1.2.7.2;29.6.2.2.7.2 Variation 2: From Cyclic Enol Ethers and Alcohols;165
1.9.1.1.2.7.3;29.6.2.2.7.3 Variation 3: From Allenyl Ethers and Alcohols;167
1.9.1.1.2.7.4;29.6.2.2.7.4 Variation 4: Dimerization of Enol Ethers;168
1.9.1.1.2.7.5;29.6.2.2.7.5 Variation 5: From Enol Ethers and Cyclic Carbonyl Ylides;169
1.9.1.1.3;29.6.2.3 Synthesis from Compounds of Lower Oxidation State;170
1.9.1.1.3.1;29.6.2.3.1 Method 1 : Synthesis from Heterosubstituted Alkanes;170
1.9.1.1.3.1.1;29.6.2.3.1.1 Variation 1: From Alcohols;170
1.9.1.1.3.1.2;29.6.2.3.1.2 Variation 2: From Alcohols and Ethers;171
1.9.1.1.3.1.3;29.6.2.3.1.3 Variation 3: From Alcohols and Alkyl Halides;172
1.9.1.1.3.2;29.6.2.3.2 Method 2: Synthesis from Alkynes with Electron-Withdrawing Substituents;172
1.9.1.1.3.3;29.6.2.3.3 Method 3: Synthesis from Alkenes;173
1.9.1.1.3.4;29.6.2.3.4 Method 4: Synthesis from Peroxy Esters;174
1.9.2;29.7 Product Class 7: 1,3-Dioxetanes and 1,3-Dioxolanes;178
1.9.2.1;29.7.3 1,3-Dioxetanes and 1,3-Dioxolanes;178
1.9.2.1.1;29.7.3.1 1,3-Dioxetanes;178
1.9.2.1.2;29.7.3.2 1,3-Dioxolanes;178
1.9.2.1.2.1;29.7.3.2.1 Method 1: Synthesis by Formation of Two C--O Bonds;180
1.9.2.1.2.1.1;29.7.3.2.1.1 Variation 1: Reactions of Carbonyl Compounds with 1,2-Diols;180
1.9.2.1.2.1.2;29.7.3.2.1.2 Variation 2: Reactions of Acetals and Ketals with 1,2-Diols;182
1.9.2.1.2.1.3;29.7.3.2.1.3 Variation 3: Reactions of Enol Ethers with 1,2-Diols;183
1.9.2.1.2.1.4;29.7.3.2.1.4 Variation 4: Reactions of Carbonyl Compounds with 1,2-Bis(trimethylsilyl) Ethers;184
1.9.2.1.2.1.5;29.7.3.2.1.5 Variation 5: Reactions of Epoxides with Ketones;185
1.9.2.1.2.1.6;29.7.3.2.1.6 Variation 6: By Double Michael Addition of 1,2-Diols to Electron-Deficient Alkynes;186
1.9.2.1.2.1.7;29.7.3.2.1.7 Variation 7: Reaction of 1,1-Dihalo Compounds with 1,2-Diols;188
1.9.2.1.2.1.8;29.7.3.2.1.8 Variation 8: Reactions of Ketones and 2-Halo Alcohols;189
1.9.2.1.2.2;29.7.3.2.2 Method 2: Synthesis by Formation of One C--O Bond;190
1.9.2.1.2.2.1;29.7.3.2.2.1 Variation 1: From Monoprotected 1,2-Diols;190
1.9.2.1.2.2.2;29.7.3.2.2.2 Variation 2: By Oxidation of Electron-Rich Arenes and Hetarenes and Cyclization;191
1.9.2.1.2.2.3;29.7.3.2.2.3 Variation 3: By Cyclization of Hydroxy-Substituted Enol Ethers;191
1.9.2.1.2.2.4;29.7.3.2.2.4 Variation 4: By Intramolecular Transacetalization;192
1.9.2.1.2.2.5;29.7.3.2.2.5 Variation 5: Additions to Activated Alkenes;193
1.9.2.1.2.3;29.7.3.2.3 Method 3: Exchange of Ligands on Existing Acetals;194
1.9.2.1.2.3.1;29.7.3.2.3.1 Variation 1: Radical Reactions;194
1.9.2.1.2.3.2;29.7.3.2.3.2 Variation 2: From Metalated Dioxolanes;194
1.9.2.1.2.3.3;29.7.3.2.3.3 Variation 3: From Ortho Esters;195
1.9.2.1.2.4;29.7.3.2.4 Method 4: Deprotection Reactions of 1,3-Dioxolanes;195
1.9.2.1.2.5;29.7.3.2.5 Method 5: Applications of Chiral 1,3-Dioxolanes in Asymmetric Synthesis;196
1.9.3;29.9 Product Class 9: Spiroketals;200
1.9.3.1;29.9.2 Spiroketals;200
1.9.3.1.1;29.9.2.1 Synthesis by Formation of Two C--O Bonds: Cyclization of Dihydroxy Ketones;200
1.9.3.1.1.1;29.9.2.1.1 Method 1: Nucleophilic Addition to Aldehydes;201
1.9.3.1.1.1.1;29.9.2.1.1.1 Variation 1: Using Dithiane-Stabilized Carbanions;201
1.9.3.1.1.1.2;29.9.2.1.1.2 Variation 2: Using Lithiated Methoxyallene Followed by Heck Reaction;202
1.9.3.1.1.2;29.9.2.1.2 Method 2: [3 + 2] Cycloaddition of Nitrile Oxides Followed by Dihydroisoxazole Hydrogenolysis;204
1.9.3.1.1.3;29.9.2.1.3 Method 3: Reductive Cross Coupling Followed by Oxidative Cleavage;206
1.9.3.1.1.4;29.9.2.1.4 Method 4: Radical Addition of Xanthates to Alkenes;208
1.9.3.1.1.5;29.9.2.1.5 Method 5: Kulinkovich Cyclopropanation of Esters Followed by Cyclopropanol Ring Opening;210
1.9.3.1.1.6;29.9.2.1.6 Method 6: Synthesis from Formyl Dianion Equivalents;211
1.9.3.1.1.6.1;29.9.2.1.6.1 Variation 1: Using Tosylmethyl Isocyanide Followed by Hydrolysis;211
1.9.3.1.1.6.2;29.9.2.1.6.2 Variation 2: Using Nitroalkanes Followed by Nef Reaction;213
1.9.3.1.2;29.9.2.2 Synthesis by Formation of Two C--O Bonds: Synthesis from Other Precursors;214
1.9.3.1.2.1;29.9.2.2.1 Method 1: Transition-Metal-Catalyzed Cyclizations;215
1.9.3.1.2.1.1;29.9.2.2.1.1 Variation 1: Palladium-Catalyzed Alkyne Cycloisomerization;215
1.9.3.1.2.1.2;29.9.2.2.1.2 Variation 2: Gold-Catalyzed Alkyne Cycloisomerization;217
1.9.3.1.2.1.3;29.9.2.2.1.3 Variation 3: Alkyne Cycloisomerization Catalyzed by Other Metals;218
1.9.3.1.2.1.4;29.9.2.2.1.4 Variation 4: Iron-Catalyzed Cyclization of Hydroxy Oxo Allylic Acetates;220
1.9.3.1.2.2;29.9.2.2.2 Method 2: Oxidative Cyclization of Phenols;221
1.9.3.1.2.3;29.9.2.2.3 Method 3: Oxidative Rearrangement of Alkyl Enol Ethers;223
1.9.3.1.2.4;29.9.2.2.4 Method 4: Iodoetherification of Dihydroxyalkenes Followed by Dehydroiodination;224
1.9.3.1.3;29.9.2.3 Synthesis by Formation of One C--O Bond and One C--C Bond;225
1.9.3.1.3.1;29.9.2.3.1 Method 1: Cycloaddition Reactions;226
1.9.3.1.3.1.1;29.9.2.3.1.1 Variation 1: Hetero-Diels–Alder Reactions of o-Quinomethanes;226
1.9.3.1.3.1.2;29.9.2.3.1.2 Variation 2: [3 + 2] Cycloadditions;229
1.9.3.1.3.2;29.9.2.3.2 Method 2: Metal-Catalyzed Cross Coupling;229
1.9.3.1.3.3;29.9.2.3.3 Method 3: Propargyl Claisen Rearrangement;231
1.9.3.1.4;29.9.2.4 Synthesis by Formation of One C--O Bond;232
1.9.3.1.4.1;29.9.2.4.1 Method 1: Oxidative Insertion;232
1.9.3.1.4.2;29.9.2.4.2 Method 2: Synthesis from Exocyclic Vinyl Ethers;234
1.9.3.1.4.2.1;29.9.2.4.2.1 Variation 1: Using Metal Carbenoids;234
1.9.3.1.4.2.2;29.9.2.4.2.2 Variation 2: Ring Expansion of Donor–Acceptor-Substituted Cyclopropanes;236
1.9.3.1.4.3;29.9.2.4.3 Method 3: Oxidation of Furans;238
1.9.3.1.4.3.1;29.9.2.4.3.1 Variation 1: Photooxygenation of Furans;238
1.9.3.1.4.3.2;29.9.2.4.3.2 Variation 2: Other Oxidation Reagents;239
1.9.3.1.4.4;29.9.2.4.4 Method 4: Lewis Acid Catalyzed 1,5-Hydride Transfer;240
1.9.3.1.5;29.9.2.5 Synthesis by Formation of One C--C Bond;241
1.9.3.1.5.1;29.9.2.5.1 Method 1: Reductive Cyclization of Cyano Acetals;241
1.9.3.1.5.2;29.9.2.5.2 Method 2: [2 + 2 + 2] Cyclotrimerization;242
1.9.3.1.6;29.9.2.6 Synthesis by Formation of Two C--O Bonds and One C--C Bond;243
1.9.3.1.6.1;29.9.2.6.1 Method 1: Palladium-Catalyzed Three-Component Coupling;243
1.9.3.1.7;29.9.2.7 Synthesis of Spiroepoxides and Related Small-Ring Spiroketals;245
1.9.3.1.7.1;29.9.2.7.1 Method 1: Synthesis by Formation of Two C--O Bonds;245
1.9.3.1.7.2;29.9.2.7.2 Method 2: Synthesis by Formation of Four C--O Bonds;246
1.9.3.1.7.3;29.9.2.7.3 Method 3: Synthesis by Formation of One C--O Bond and One C--C Bond;247
1.9.3.1.8;29.9.2.8 Synthesis of Trioxadispiroketals;248
1.9.4;29.16 Product Class 16: Glycosyl Oxygen Compounds (Di- and Oligosaccharides);256
1.9.4.1;29.16.1 Product Subclass 1: Disaccharides;256
1.9.4.1.1;29.16.1.1 Synthesis of Product Subclass 1;259
1.9.4.1.1.1;29.16.1.1.1 Method 1: Synthesis from Anomeric Halides;259
1.9.4.1.1.1.1;29.16.1.1.1.1 Variation 1: From Fluorides;259
1.9.4.1.1.1.2;29.16.1.1.1.2 Variation 2: From Chlorides and Bromides;261
1.9.4.1.1.1.3;29.16.1.1.1.3 Variation 3: From Iodides;264
1.9.4.1.1.2;29.16.1.1.2 Method 2: Synthesis from 1-Oxygen-Substituted Derivatives;266
1.9.4.1.1.2.1;29.16.1.1.2.1 Variation 1: From Hemiacetals;266
1.9.4.1.1.2.2;29.16.1.1.2.2 Variation 2: From O-Acyl, O-Carbonyl, and Related Compounds;268
1.9.4.1.1.2.3;29.16.1.1.2.3 Variation 3: From O-Imidates;271
1.9.4.1.1.2.4;29.16.1.1.2.4 Variation 4: From Phosphites, Phosphates, and Other O--P Derivatives;277
1.9.4.1.1.2.5;29.16.1.1.2.5 Variation 5: From O-Sulfonyl Derivatives;280
1.9.4.1.1.2.6;29.16.1.1.2.6 Variation 6: By O-Transglycosidation;280
1.9.4.1.1.3;29.16.1.1.3 Method 3: Synthesis from 1-Sulfur-Substituted Derivatives;286
1.9.4.1.1.3.1;29.16.1.1.3.1 Variation 1: From Alkylsulfanyl and Arylsulfanyl Glycosides (Thioglycosides);286
1.9.4.1.1.3.2;29.16.1.1.3.2 Variation 2: From Thioimidates;293
1.9.4.1.1.3.3;29.16.1.1.3.3 Variation 3: From Sulfoxides, Sulfimides, and Sulfones;296
1.9.4.1.1.3.4;29.16.1.1.3.4 Variation 4: From Xanthates and Related Derivatives;297
1.9.4.1.1.3.5;29.16.1.1.3.5 Variation 5: From Thiocyanates and Other Thio Derivatives;298
1.9.4.1.1.4;29.16.1.1.4 Method 4: Synthesis from Miscellaneous Glycosyl Donors;300
1.9.4.1.1.4.1;29.16.1.1.4.1 Variation 1: From Ortho Esters and Dihydrooxazoles;300
1.9.4.1.1.4.2;29.16.1.1.4.2 Variation 2: From 1,2-Dehydro and 1,2-Anhydro Derivatives;303
1.9.4.1.1.4.3;29.16.1.1.4.3 Variation 3: From Seleno- and Telluroglycosides;307
1.9.4.1.1.4.4;29.16.1.1.4.4 Variation 4: From 1-Diazirine Derivatives;309
1.9.4.1.1.5;29.16.1.1.5 Method 5: Synthesis by Intramolecular and Indirect Methods;309
1.9.4.2;29.16.2 Product Subclass 2: Oligosaccharides;317
1.9.4.2.1;29.16.2.1 Synthesis of Product Subclass 2;318
1.9.4.2.1.1;29.16.2.1.1 Method 1: Linear Synthesis;318
1.9.4.2.1.2;29.16.2.1.2 Method 2: Block Synthesis;321
1.9.4.2.1.3;29.16.2.1.3 Method 3: Synthesis by Selective Activation;331
1.9.4.2.1.4;29.16.2.1.4 Method 4: Synthesis by Two-Step Activation and In Situ Preactivation;334
1.9.4.2.1.5;29.16.2.1.5 Method 5: Armed–Disarmed and Related Chemoselective Approaches;340
1.9.4.2.1.5.1;29.16.2.1.5.1 Variation 1: Arming and Disarming with Neighboring Substituents;341
1.9.4.2.1.5.2;29.16.2.1.5.2 Variation 2: Disarming with Remote Substituents;346
1.9.4.2.1.5.3;29.16.2.1.5.3 Variation 3: Disarming by Torsional Effects;347
1.9.4.2.1.5.4;29.16.2.1.5.4 Variation 4: Reactivity-Based Programmable Strategy;351
1.9.4.2.1.5.5;29.16.2.1.5.5 Variation 5: Superdisarmed Building Blocks;353
1.9.4.2.1.5.6;29.16.2.1.5.6 Variation 6: Superarmed Glycosyl Donors;355
1.9.4.2.1.6;29.16.2.1.6 Method 6: The Active–Latent Approach;358
1.9.4.2.1.7;29.16.2.1.7 Method 7: Steric Hindrance and Temporary Deactivation;360
1.9.4.2.1.8;29.16.2.1.8 Method 8: Orthogonal and Semi-Orthogonal Strategies;366
1.9.4.2.1.9;29.16.2.1.9 Method 9: One-Pot Strategies;371
1.9.4.2.1.10;29.16.2.1.10 Method 10: Regioselective and Other Acceptor-Reactivity-Based Concepts;384
1.9.4.2.1.11;29.16.2.1.11 Method 11: Polymer-Supported Synthesis;390
1.9.4.2.1.11.1;29.16.2.1.11.1 Variation 1: Automated Synthesis;404
1.9.4.2.1.12;29.16.2.1.12 Method 12: Fluorous Tag Supported, Ionic Liquid Supported, and Microreactor Synthesis;408
1.9.4.2.1.13;29.16.2.1.13 Method 13: Surface-Tethered Synthesis;421
1.9.4.2.1.14;29.16.2.1.14 Method 14: Enzymatic Synthesis;423
1.9.4.2.1.14.1;29.16.2.1.14.1 Variation 1: Using Glycosyltransferases;423
1.9.4.2.1.14.2;29.16.2.1.14.2 Variation 2: Using Glycosidases (Hydrolases);428
1.9.5;29.17 Product Class 17: Acyclic Hemiacetals, Lactols, and Carbonyl Hydrates;444
1.9.5.1;29.17.1 Product Subclass 1: Acyclic Hemiacetals;444
1.9.5.1.1;29.17.1.1 Synthesis of Product Subclass 1;444
1.9.5.1.1.1;29.17.1.1.1 Method 1: Synthesis from Aldehydes or Ketones by Addition of Alcohols;444
1.9.5.1.1.2;29.17.1.1.2 Method 2: Reduction of Esters;445
1.9.5.1.1.3;29.17.1.1.3 Method 3: Addition of Carbon Nucleophiles to Esters;446
1.9.5.1.1.3.1;29.17.1.1.3.1 Variation 1: Addition of Nucleophiles Bearing Stabilizing Groups;446
1.9.5.1.1.3.2;29.17.1.1.3.2 Variation 2: Addition of Nucleophiles Bearing Stabilizing Groups to Esters Bearing Stabilizing Groups;447
1.9.5.2;29.17.2 Product Subclass 2: Lactols;448
1.9.5.2.1;29.17.2.1 Synthesis of Product Subclass 2;449
1.9.5.2.1.1;29.17.2.1.1 Method 1: Reduction of Lactones;449
1.9.5.2.1.1.1;29.17.2.1.1.1 Variation 1: Using Diisobutylaluminum Hydride;449
1.9.5.2.1.1.2;29.17.2.1.1.2 Variation 2: Using Other Aluminum Hydride Reagents;450
1.9.5.2.1.1.3;29.17.2.1.1.3 Variation 3: Metal Hydride Catalyzed Hydrosilylation;453
1.9.5.2.1.1.4;29.17.2.1.1.4 Variation 4: Using Borohydride Reagents;455
1.9.5.2.1.2;29.17.2.1.2 Method 2: Addition of Carbon Nucleophiles to Lactones;456
1.9.5.2.1.2.1;29.17.2.1.2.1 Variation 1: Addition of Preformed Alkylmetal Reagents to Lactones;456
1.9.5.2.1.2.2;29.17.2.1.2.2 Variation 2: Barbier Additions to Lactones;463
1.9.5.2.1.3;29.17.2.1.3 Method 3: Oxidation of Diols;464
1.9.5.2.1.3.1;29.17.2.1.3.1 Variation 1: By Selective Oxidation of a Primary Hydroxy Group;465
1.9.5.2.1.3.2;29.17.2.1.3.2 Variation 2: By Selective Oxidation of a Secondary Hydroxy Group;468
1.9.5.2.1.3.3;29.17.2.1.3.3 Variation 3: By Selective Oxidation of Allylic and Benzylic Hydroxy Groups;469
1.9.5.2.1.4;29.17.2.1.4 Method 4: Reduction of Dicarbonyl Compounds;470
1.9.5.2.1.5;29.17.2.1.5 Method 5: Addition of Carbon Nucleophiles to Dicarbonyl Compounds;473
1.9.5.2.1.6;29.17.2.1.6 Method 6: Deprotection of Protected Cyclic Hemiacetals;476
1.9.5.2.1.6.1;29.17.2.1.6.1 Variation 1: Deprotection of O-Alkyl Lactols;476
1.9.5.2.1.6.2;29.17.2.1.6.2 Variation 2: Deprotection of O-Acyl Lactols;478
1.9.5.2.1.6.3;29.17.2.1.6.3 Variation 3: Deprotection of O-Silyl Lactols;479
1.9.5.2.1.7;29.17.2.1.7 Method 7: Synthesis From Enol Ethers;480
1.9.5.2.1.7.1;29.17.2.1.7.1 Variation 1: Acid-Catalyzed Hydration of Enol Ethers;480
1.9.5.2.1.7.2;29.17.2.1.7.2 Variation 2: Oxidation of Enol Ethers;481
1.9.5.2.1.8;29.17.2.1.8 Method 8: Oxidation of Cyclic Ethers;485
1.9.5.3;29.17.3 Product Subclass 3: Carbonyl Hydrates;486
1.9.5.3.1;29.17.3.1 Synthesis of Product Subclass 3;487
1.9.5.3.1.1;29.17.3.1.1 Method 1: Hydration of Carbonyl Compounds;487
1.9.5.3.1.1.1;29.17.3.1.1.1 Variation 1: Synthesis from Carbonyl Compounds Bearing Electron-Withdrawing Groups;487
1.9.5.3.1.1.2;29.17.3.1.1.2 Variation 2: Synthesis of Carbonyl Hydrates Stabilized by Hydrogen Bonding;490
1.9.5.3.1.1.3;29.17.3.1.1.3 Variation 3: Synthesis from Strained Ketones;491
1.9.5.3.1.2;29.17.3.1.2 Method 2: Oxidation of Activated Methyl or Methylene Groups;493
1.9.5.3.1.2.1;29.17.3.1.2.1 Variation 1: Oxidation Using Dimethyldioxirane;493
1.9.5.3.1.2.2;29.17.3.1.2.2 Variation 2: Oxidation Using Selenium Dioxide;493
1.9.5.3.1.2.3;29.17.3.1.2.3 Variation 3: Other Oxidations;495
1.9.6;29.18 Product Class 18: 1,1-Diacyloxy Compounds;502
1.9.6.1;29.18.1 Synthesis of Product Class 18;503
1.9.6.1.1;29.18.1.1 Acylation of Carbonyl Compounds;503
1.9.6.1.1.1;29.18.1.1.1 Method 1: Acylation of Aldehydes;503
1.9.6.1.1.1.1;29.18.1.1.1.1 Variation 1: Using a Lewis Acid Catalyst;503
1.9.6.1.1.1.2;29.18.1.1.1.2 Variation 2: In the Absence of a Catalyst;505
1.9.6.1.1.2;29.18.1.1.2 Method 2: Acylation of Ketones;506
1.9.6.1.1.2.1;29.18.1.1.2.1 Variation 1: Synthesis of Meldrum's Acid Using a Diacid and a Ketone;506
1.9.6.1.1.2.2;29.18.1.1.2.2 Variation 2: Using an Oxo Acid;508
1.9.6.1.1.3;29.18.1.1.3 Method 3: Synthesis from 1-Acyloxy-1-hydroxy Compounds, Carbonyl Hydrates, or Vinyl Esters;509
1.9.6.1.2;29.18.1.2 Alkylation of Carboxy Groups;513
1.9.6.1.2.1;29.18.1.2.1 Method 1: Synthesis Using Hal/Hal Acetal Electrophiles;513
1.9.6.1.2.2;29.18.1.2.2 Method 2: Synthesis Using O/Hal Acetal Electrophiles;513
1.9.6.1.3;29.18.1.3 Oxidative Methods;515
1.9.6.1.3.1;29.18.1.3.1 Method 1: Synthesis Using Single-Electron-Transfer Reagents;515
1.9.6.1.3.1.1;29.18.1.3.1.1 Variation 1: Oxidation of Benzylic Methyl and Methylene Groups;515
1.9.6.1.3.2;29.18.1.3.2 Method 2: Other Oxidations;516
1.9.6.1.3.2.1;29.18.1.3.2.1 Variation 1: Baeyer–Villiger Oxidation of a-Acyloxy Ketones;516
1.9.6.1.3.2.2;29.18.1.3.2.2 Variation 2: Oxidation of Furan Derivatives;517
1.9.6.1.4;29.18.1.4 Synthesis from Propargyl Esters;520
1.10;Author Index;524
1.11;Abbreviations;548
1.12;List of All Volumes;554
7.6.5.6 Aryl Grignard Reagents (Update 2010)
H. Yorimitsu General Introduction
The conventional preparation of aryl Grignard reagents from aryl halides and magnesium metal still remains the most important and convenient available method. However, an improved Grignard method was reported in 2008 utilizing lithium chloride as an additive (see ? Section 7.6.5.6.1). Recently, halogen–magnesium exchange between aryl halides and alkyl Grignard reagents has been attracting increasing attention as the exchange allows for preparation of functionalized aryl Grignard reagents such as cyano- and carbonyl-substituted species (see ? Section 7.6.5.6.2). Furthermore, deprotonation assisted by a directing group is also emerging as a useful method for the preparation of functionalized aryl Grignard reagents (see ? Section 7.6.5.6.3). 7.6.5.6.1 Method 1: Synthesis by Reaction of Aryl Halides and Magnesium in the Presence of Lithium Chloride
A critical drawback of the conventional method for obtaining Grignard reagents is the requirement for higher temperatures, in the region of 30–60°C, conditions which many functional groups are unable to survive. The presence of lithium chloride has proved to promote the formation of aryl Grignard reagents, providing a milder method for the preparation of a variety of functionalized aryl Grignard species (? Table 1).[1] The lithium chloride mediated magnesiation requires that the magnesium should be activated with diisobutylaluminum hydride (1 mol%), and the method is powerful enough to allow the use of aryl chlorides as starting materials as well as to effect the dimagnesiation of dihaloarenes. It is worth noting that the aryl Grignard reagents complexed with lithium chloride exhibit a higher degree of reactivity toward electrophiles than the conventional aryl Grignard reagents. The functionalized Grignard reagents obtained by this procedure can participate in nucleophilic addition to carbonyl groups as well as in catalytic cross-coupling reactions. ? Table 1 Preparation of Arylmagnesium Halides Complexed with Lithium Chloride by Direct Insertion of Magnesium[1] Entry Starting Material Conditions Product Ref 1 DIBAL-H (cat.), Mg, LiCl, THF, 25°C, 30 min [1] 2 DIBAL-H (cat.), Mg, LiCl, THF, –50°C, 3 h [1] 3 DIBAL-H (cat.), Mg, LiCl, THF, 0–25°C, 16 h [1] (2-Cyanophenyl)magnesium Bromide–Lithium Chloride Complex (? Table 1, Entry 1):[1] Mg turnings (0.12 g, 5 mmol) were placed in a dry, argon-flushed Schlenk flask equipped with a magnetic stirrer and a septum. A 0.50 M soln of LiCl in THF (5.0 mL, 2.5 mmol) was added, followed by 0.1 M DIBAL-H in THF (0.2 mL, 0.02 mmol) to activate the Mg. The mixture was stirred for 5 min and 2-BrC6H4CN (0.36 g, 2.0 mmol) was then added in one portion at 25°C. The mixture was stirred for 30 min and then cannulated to a new Schlenk flask for reaction with an electrophile. 7.6.5.6.2 Method 2: Synthesis by Halogen–Magnesium Exchange with Alkyl Grignard Reagents
Since the discovery of isopropylmagnesium chloride–lithium chloride complex (1) as an extremely powerful reagent for halogen–magnesium exchange, the process has become one of the most reliable and efficient methods for preparing functionalized aryl Grignard reagents, such as (5-bromo-3-pyridyl)magnesium chloride–lithium chloride complex (2, Ar1 = 5-bromo-3-pyridyl) (? Scheme 1).[2] The halogen–magnesium exchange proceeds within a convenient range of temperatures (–15 to 25°C) and is applicable to large-scale preparations. It is thus outstandingly synthetically useful and, although complex 1 is readily prepared from 2-chloropropane, magnesium turnings, and lithium chloride, it is now commercially available. ? Scheme 1 Halogen–Magnesium Exchange with Isopropylmagnesium Chloride–Lithium Chloride Complex[2] Ar1 Conditions Ref 4-NCC6H4 THF, 0°C, 2 h [2] 2-iPrO2CC6H4 THF/DMPU, –10°C, 3 h [2] 2-BrC6H4 THF, –15°C, 2 h [2] 5-bromo-3-pyridyl THF, –10°C, 15 min [2] Isopropylmagnesium Chloride–Lithium Chloride Complex (1):[2] Mg turnings (2.7 g, 0.11 mol) and anhyd LiCl (4.24 g, 0.10 mol) were placed in a flask under argon. THF (50 mL) was added, followed by slow addition of a soln of iPrCl (7.85 g, 0.10 mol) in THF (50 mL) at rt. The reaction started within a few minutes and, after the addition, the mixture was stirred for 12 h at ambient temperature. The resulting gray soln was transferred by cannula into another flask under argon to remove the remaining excess Mg. The yield of complex 1 was determined to be 95–98%. (5-Bromo-3-pyridyl)magnesium Chloride–Lithium Chloride Complex (2, Ar1 = 5-Bromo-3-pyridyl):[2] A 10-mL flask equipped with a magnetic stirrer and a septum was charged with a 1.05 M soln of complex 1 in THF (1.0 mL, 1.05 mmol) under argon. 3,5-Dibromopyridine (0.24 g, 1.0 mmol) was added to this mixture in one portion at –15°C. The reaction temperature was increased to –10°C and the bromine–magnesium exchange was complete in 15 min. 7.6.5.6.2.1 Variation 1: Synthesis by Halogen–Magnesium Exchange with Lithium Triorganomagnesates
Lithium triorganomagnesates are effective reagents for halogen–magnesium exchange.[3–6] The magnesium “ate” complexes are prepared by mixing an alkylmagnesium halide with 2 equivalents of an alkyllithium reagent. The reactivity is as high as that of the corresponding isopropylmagnesium chloride complex (see ? Section 7.6.5.6.2), and the reagents are reliable enough to use on an industrial scale.[5,6] There are many examples of magnesate-mediated halogen–magnesium exchange in modern organic synthesis.[7–10] Although all of the alkyl groups on the magnesate are potentially able to engage in exchange, as in the synthesis of triarylmagnesate 3,[10] in many cases only one of the three groups participates to give dialkyl(aryl)magnesates such as 4[3] (? Scheme 2). ? Scheme 2 Bromine–Magnesium Exchange with Lithium Tributylmagnesate[3,10] Lithium Tris(quinolin-3-yl)magnesate (3):[10] A 1.6 M soln of BuLi in hexanes (0.81 mL, 1.3 mmol) was added to a soln prepared from 2.0 M BuMgCl in Et2O (0.33 mL, 0.65 mmol) and toluene (2 mL) at –10°C. After the mixture had been stirred for 1 h at –10°C, a soln of 3-bromoquinoline (0.23 mL, 1.7 mmol) in toluene (2 mL) was added at –30°C. The mixture was stirred for 2.5 h at –10°C to give the product. Lithium Dibutyl[4-(dimethylamino)phenyl]magnesate (4):[3] A 1.6 M soln of BuLi in hexane (1.5 mL, 2.4 mmol) was added to a soln prepared from 1.0 M BuMgBr in THF (1.2 mL, 1.2 mmol) and THF (2 mL) at 0°C. After the mixture had been stirred for 10 min, a soln of 4-Me2NC6H4Br (0.20 g, 1.0 mmol) in THF (2 mL) was added dropwise. Stirring for 30 min at 0°C led to the complete formation of the product. 7.6.5.6.3 Method 3: Synthesis by Deprotonative ortho-Magnesiation
Complexes of bulky magnesium amides with lithium chloride, such as (2,2,6,6-tetramethylpiperidin-1-yl)magnesium chloride–lithium chloride complex (5) and bis(2,2,6,6-tetramethylpiperidin-1-yl)magnesium–bis(lithium chloride) complex (6), have emerged as excellent reagents for deprotonative magnesiation (? Table 2).[11–15] Advantageously, the reagents are more reactive than simple (2,2,6,6-tetramethylpiperidin-1-yl)magnesium halides, and the resulting arylmagnesium reagents have milder reactivity compared with those generated by lithium 2,2,6,6-tetramethylpiperidide. ? Table 2 Direct Magnesiation with Magnesium Amide–Lithium Chloride Complexes[11,13,15] Entry Starting Material Amide Complex Conditions Product Ref 1 THF, 25°C, 2 h [11] 2 THF, 25°C, 1...