E-Book, Englisch, 194 Seiten, eBook
Isaev Twenty-One Lectures on Complex Analysis
Erscheinungsjahr 2017
ISBN: 978-3-319-68170-2
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
A First Course
E-Book, Englisch, 194 Seiten, eBook
Reihe: Springer Undergraduate Mathematics Series
ISBN: 978-3-319-68170-2
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Upper undergraduate
Autoren/Hrsg.
Weitere Infos & Material
1. Complex Numbers. The Fundamental Theorem of Algebra.- 2. R- and C-Differentiability.- 3 The Stereographic Projection. Conformal Maps. The Open Mapping Theorem.- 4. Conformal Maps (Continued). Möbius Transformations.- 5. Möbius Transformations (Continued). Generalised Circles. Symmetry.- 6. Domains Bounded by Pairs of Generalised Circles. Integration.- 7. Primitives Along Paths. Holomorphic Primitives on a Disk. Goursat’s Lemma.- 8. Proof of Lemma 7.2. Homotopy. The Riemann Mapping Theorem.- 9. Cauchy’s Independence of Homotopy Theorem. Jordan Domains.- 10. Cauchy’s Integral Theorem. Proof of Theorem 3.1. Cauchy’s Integral Formula.- 11. Morera’s Theorem. Power Series. Abel’s Theorem. Disk and Radius of Convergence.- 12. Power Series (Cont’d). Expansion of a Holomorphic Function. The Uniqueness Theorem.- 13. Liouville’s Theorem. Laurent Series. Isolated Singularities.- 14. Isolated Singularities (Continued). Poles and Zeroes. Isolated Singularities at infinity.- 15. Isolated Singularities at infinity (Continued). Residues. Cauchy’s Residue Theorem.- 16. Residues (Continued). Contour Integration. The Argument Principle 137.- 17. The Argument Principle (Cont’d). Rouché’s Theorem. The Maximum Modulus Principle.- 18. Schwarz’s Lemma. (Pre) Compactness. Montel’s Theorem. Hurwitz’s Theorem.- 19. Analytic Continuation.- 20. Analytic Continuation (Continued). The Monodromy Theorem.- 21. Proof of Theorem 8.3. Conformal Transformations of Simply- Connected Domains.- Index.