Isac / Ivanov / Katz | Software Verification and Formal Methods for ML-Enabled Autonomous Systems | Buch | 978-3-031-21221-5 | www2.sack.de

Buch, Englisch, 205 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 335 g

Reihe: Lecture Notes in Computer Science

Isac / Ivanov / Katz

Software Verification and Formal Methods for ML-Enabled Autonomous Systems

5th International Workshop, FoMLAS 2022, and 15th International Workshop, NSV 2022, Haifa, Israel, July 31 - August 1, and August 11, 2022, Proceedings
1. Auflage 2022
ISBN: 978-3-031-21221-5
Verlag: Springer

5th International Workshop, FoMLAS 2022, and 15th International Workshop, NSV 2022, Haifa, Israel, July 31 - August 1, and August 11, 2022, Proceedings

Buch, Englisch, 205 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 335 g

Reihe: Lecture Notes in Computer Science

ISBN: 978-3-031-21221-5
Verlag: Springer


This book constitutes the refereed proceedings of the 5th International Workshop on Software Verification and Formal Methods for ML-Enables Autonomous Systems, FoMLAS 2022, and the 15th International Workshop on Numerical Software Verification, NSV 2022, which took place in Haifa, Israel, in July/August 2022. 
The volume contains 8 full papers from the FoMLAS 2022 workshop and 3 full papers from the NSV 2022 workshop. The FoMLAS workshop is dedicated to the development of novel formal methods techniques to discussing on how formal methods can be used to increase predictability, explainability, and accountability of ML-enabled autonomous systems. NSV 2022 is focusing on the challenges of the verification of cyber-physical systems with machine learning components. 
Isac / Ivanov / Katz Software Verification and Formal Methods for ML-Enabled Autonomous Systems jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


FoMLAS 2022.-  VPN: Verification of Poisoning in Neural Networks.- A Cascade of Checkers for Run-time Certification of Local Robustness.- CEG4N: Counter-Example Guided Neural Network Quantization Refinement .- Minimal Multi-Layer Modifications of Deep Neural Networks.- Differentiable Logics for Neural Network Training and Verification.- Neural Networks in Imandra: Matrix Representation as a Verification Choice.- Self-Correcting Neural Networks For Safe Classification.- Self-Correcting Neural Networks For Safe Classification.-  NSV 2022.-  Verified Numerical Methods for Ordinary Differential Equations.- Neural Network Precision Tuning Using Stochastic Arithmetic.- MLTL Multi-type (MLTLM): A Logic for Reasoning about Signals of Different Types.   



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.