Buch, Englisch, 366 Seiten, Format (B × H): 178 mm x 254 mm, Gewicht: 853 g
Buch, Englisch, 366 Seiten, Format (B × H): 178 mm x 254 mm, Gewicht: 853 g
Reihe: Ubiquitous Computing, Healthcare and Well-being
ISBN: 978-1-032-63918-5
Verlag: CRC Press
Zielgruppe
Academic, Postgraduate, and Professional Reference
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Computer Vision
- Mathematik | Informatik EDV | Informatik Informatik Bildsignalverarbeitung
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Data Mining
- Medizin | Veterinärmedizin Medizin | Public Health | Pharmazie | Zahnmedizin Pflege Pflegeforschung, Pflegemanagement
- Mathematik | Informatik EDV | Informatik Programmierung | Softwareentwicklung Spiele-Programmierung, Rendering, Animation
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Maschinelles Lernen
- Mathematik | Informatik EDV | Informatik Professionelle Anwendung
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Mustererkennung, Biometrik
Weitere Infos & Material
Foreword
Preface
Acknowledgments
About the Editors
Part 1: Activity and Behavior
Chapter 1: PressureTransferNet: Human Attribute Guided Dynamic Ground Pressure Profile Transfer using 3D Simulated Pressure Maps
Chapter 2: SIMUAug: Variability-aware Data Augmentation for Wearable IMU using Physics Simulation
Chapter 3: Estimation of Muscle Activation during Complex Movement using Unsupervised Motion Primitives Decomposition of Limb Kinematics
Chapter 4: Pitcher Identification Method using an Accelerometer and Gyroscope Embedded in a Baseball
Chapter 5: Design and Implementation of a Long-Casting Support System for Lure Fishing using an Accelerometer
Chapter 6: Contrastive Left-Right Wearable Sensors (IMUs) Consistency Matching for HAR
Chapter 7: Estimation Method of Doneness for Boiled Eggs and Diced Steaks using Active Acoustic Sensing
Part 2: Healthcare
Chapter 8: Older Adults Daily Mobility and Its Connection to DEMMI
Chapter 9: Subjective Stress and Heart Rate Variability Patterns: A Study on Harassment Detection
Chapter 10: Analysis of Physiological Variances in Thermal Comfort among Individuals
Chapter 11: Personal Thermal Assessment using Feature Reduction and Machine Learning Techniques
Chapter 12: Analysis of Personal Thermal State using Machine Learning Algorithms to Prevent Heatstroke
Chapter 13: Ensemble Learning Models-Based Prediction of Personal Thermal Assessment Aimed at Heatstroke Prevention
Chapter 14: Predicting Heatstroke Risk and Preventing Health Complications: An Innovative Approach Using Machine Learning and Physiological Data
Chapter 15: Predictive Modeling for Heatstroke Risk Forecasting Integrating Physiological Features Using Ensemble Classifier
Chapter 16: Clustering-Based Feature Selection and Stacked Generalization Method to Offset Imbalanced Data for Thermal Stress Assessment
Chapter 17: Enhancing Personalized Heatstroke Prevention: Forecasting Thermal Comfort Sensations through Data-Driven Models
Chapter 18: Advancing Heatstroke Prevention: Integrating Physiological Data for Enhanced Thermal Comfort Forecasting
Chapter 19: Intrapatient Forecasting of Parkinson’s Wearing-Off by Analyzing Data from Wrist-Worn Fitness Tracker and Smartphone
Chapter 20: Foreseeing Wearing-Off State in Parkinson’s Disease Patients: A Multimodal Approach with the Usage of Machine Learning and Wearables
Chapter 21: Wearable Technology-Enabled Prediction of Wearing-Off Phenomenon in Parkinson's Disease: A Personalized Approach Using LSTM-Based Time-Series Analysis
Chapter 22: Forecasting Parkinson’s Patient’s Wearing-Off Periods by Employing Stacked Super Learner
Chapter 23: Forecasting Wearing-Off in Parkinson’s Disease: An Ensemble Learning Approach Using Wearable Data
Chapter 24: Forecasting the Wearing-Off Phenomenon in Parkinson’s Disease: Summarized Approaches and Insights