Ingham / Kelmanson | Boundary Integral Equation Analyses of Singular, Potential, and Biharmonic Problems | E-Book | sack.de
E-Book

E-Book, Englisch, Band 7, 173 Seiten, eBook

Reihe: Lecture Notes in Engineering

Ingham / Kelmanson Boundary Integral Equation Analyses of Singular, Potential, and Biharmonic Problems


Erscheinungsjahr 2012
ISBN: 978-3-642-82330-5
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, Band 7, 173 Seiten, eBook

Reihe: Lecture Notes in Engineering

ISBN: 978-3-642-82330-5
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



Harmonic and biharmonic boundary value problems (BVP) arising in physical situations in fluid mechanics are, in general, intractable by analytic techniques. In the last decade there has been a rapid increase in the application of integral equation techniques for the numerical solution of such problems [1,2,3]. One such method is the boundary integral equation method (BIE) which is based on Green's Formula [4] and enables one to reformulate certain BVP as integral equations. The reformulation has the effect of reducing the dimension of the problem by one. Because discretisation occurs only on the boundary in the BIE the system of equations generated by a BIE is considerably smaller than that generated by an equivalent finite difference (FD) or finite element (FE) approximation [5]. Application of the BIE in the field of fluid mechanics has in the past been limited almost entirely to the solution of harmonic problems concerning potential flows around selected geometries [3,6,7]. Little work seems to have been done on direct integral equation solution of viscous flow problems. Coleman [8] solves the biharmonic equation describing slow flow between two semi infinite parallel plates using a complex variable approach but does not consider the effects of singularities arising in the solution domain. Since the vorticity at any singularity becomes unbounded then the methods presented in [8] cannot achieve accurate results throughout the entire flow field.

Ingham / Kelmanson Boundary Integral Equation Analyses of Singular, Potential, and Biharmonic Problems jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Content.- 1 — General Introduction.- 2 — An Integral Equation Method for the Solution of Singular Slow Flow Problems.- 3 — Modified Integral Equation Solution of Viscous Flows Near Sharp Corners.- 4 — Solution of Nonlinear Elliptic Equations with Boundary Singularities by an Integral Equation Method.- 5 — Boundary Integral Equation Solution of Viscous Flows with Free Surfaces.- 6 — A Boundary Integral Equation Method for the Study of Slow Flow in Bearings with Arbitrary Geometrics.- 7 — General Conclusions.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.