Buch, Englisch, Band 137, 513 Seiten, HC runder Rücken kaschiert, Format (B × H): 160 mm x 241 mm, Gewicht: 2050 g
Reihe: NATO Science Series II: Mathematics, Physics and Chemistry
Buch, Englisch, Band 137, 513 Seiten, HC runder Rücken kaschiert, Format (B × H): 160 mm x 241 mm, Gewicht: 2050 g
Reihe: NATO Science Series II: Mathematics, Physics and Chemistry
ISBN: 978-1-4020-1928-9
Verlag: Springer Netherlands
The following subjects are covered: new tools for local and global properties of systems and families of systems, nonlocal bifurcations, finiteness properties of Pfaffian functions and of differential equations, geometric interpretation of the Stokes phenomena, analytic theory of ordinary differential equations and complex foliations, applications to Hilbert's 16 problem.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Geometrie Algebraische Geometrie
- Mathematik | Informatik Mathematik Algebra Zahlentheorie
- Mathematik | Informatik Mathematik Mathematische Analysis Harmonische Analysis, Fourier-Mathematik
- Mathematik | Informatik Mathematik Mathematische Analysis Funktionalanalysis
- Mathematik | Informatik Mathematik Mathematische Analysis Differentialrechnungen und -gleichungen
- Mathematik | Informatik Mathematik Mathematische Analysis Funktionentheorie, Komplexe Analysis
Weitere Infos & Material
Relations between Abelian integrals and limit cycles.- Topics on singularities and bifurcations of vector fields.- Recent advances in the analysis of divergence and singularities.- Local bifurcations of limit cycles, Abel equations and Liénard systems.- Complexity of computations with Pfaffian and Noetherian functions.- Hamiltonian bifurcations and local analytic classification.- Confluence of singular points and Stokes phenomena.- Bifurcations of relaxation oscillations.- Selected topics in differential equations with real and complex time.- Growth rate of the number of periodic points.- Lectures on meromorphic flat connections.- Normal forms, bifurcations and finiteness properties of vector fields.- Aspects of planar polynomial vector fields: global versus local, real versus complex, analytic versus algebraic and geometric.