Il'in | Spectral Theory of Differential Operators | Buch | 978-0-306-11037-5 | sack.de

Buch, Englisch, 390 Seiten, Format (B × H): 178 mm x 254 mm, Gewicht: 930 g

Il'in

Spectral Theory of Differential Operators

Self-Adjoint Differential Operators
1995. Auflage 1995
ISBN: 978-0-306-11037-5
Verlag: Springer Us

Self-Adjoint Differential Operators

Buch, Englisch, 390 Seiten, Format (B × H): 178 mm x 254 mm, Gewicht: 930 g

ISBN: 978-0-306-11037-5
Verlag: Springer Us


In this fully-illustrated textbook, the author examines the spectral theory of self-adjoint elliptic operators. Chapters focus on the problems of convergence and summability of spectral decompositions about the fundamental functions of elliptic operators of the second order. The author's work offers a novel method for estimation of the remainder term of a spectral function and its Riesz means without recourse to the traditional Carleman technique and Tauberian theorem apparatus.

Il'in Spectral Theory of Differential Operators jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


1. Expansion in the Fundamental System of Functions of the Laplace Operator.- 1.1 Fundamental Systems of Functions and Their Properties.- 1.2 Fractional Kernels.- 1.3 Estimate for the Remainder Term of a Spectral Function in the Metric L2 and the Resulting Corollaries.- 1.4 Exact Conditions for the Localization and Uniform Convergence of Expansions with Respect to an Arbitrary FSF in the Sobolev-Liouville Classes.- 1.5 On the Potential Generalization of the Theory.- Comments on Chapter 1.- 2. Spectral Decompositions Corresponding to an Arbitrary Self-Adjoint Nonnegative Extension of the Laplace Operator.- 2.1 Self-Adjoint Nonnegative Extensions of Elliptic Operators. Ordered Spectral Representations of the Space L2. Classes of Differentiate Functions of N Variables.- 2.2 Formulation and Analysis of Main Results.- 2.3 Certain Properties of the Fundamental Functions of an Arbitrary Ordered Spectral Representation in the Space L2.- 2.4 Proof of Negative Theorem 2.1.- 2.5 Proof of Positive Theorem 2.3.- 2.6 Estimate for the Remainder Term of the Riesz Means of a Spectral Function in the Metric L2.- 2.7 Estimate for the Remainder Term of the Riesz Means of a Spectral Function in the Metric L2.- Comments on Chapter 2.- 3. On the Riesz Equisummability of Spectral Decompositions in the Classical and the Generalized Sense.- 3.1 On the Riesz Equisummability of Spectral Decompositions in the Classical Sense.- 3.2 On the Riesz Equisummability of Spectral Decompositions in the Generalized Sense.- Comments on Chapter 3.- 4. Self-Adjoint Nonnegative Extensions of an Elliptic Operator of Second Order.- 4.1 Ancillary Propositions about Fundamental Functions.- 4.2 Theorems of Negative Type.- 4.3 Theorems of Positive Type.- Comments on Chapter 4.- Appendix 1. Conditions for the Uniform Convergence of Multiple Trigonometric Fourier Series with Spherical Partial Sums.- Appendix 2. Conditions for the Uniform Convergence of Decompositions in Eigenfunctions of the First, Second, and Third Boundary-Value Problems for an Elliptic Operator of Second Order.- Epilogue.- References.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.