Ignatov / Khachay / Savchenko | Analysis of Images, Social Networks and Texts | E-Book | sack.de
E-Book

E-Book, Englisch, Band 14486, 364 Seiten, eBook

Reihe: Lecture Notes in Computer Science

Ignatov / Khachay / Savchenko Analysis of Images, Social Networks and Texts

11th International Conference, AIST 2023, Yerevan, Armenia, September 28–30, 2023, Revised Selected Papers

E-Book, Englisch, Band 14486, 364 Seiten, eBook

Reihe: Lecture Notes in Computer Science

ISBN: 978-3-031-54534-4
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book constitutes revised selected papers from the thoroughly refereed proceedings of the 11th International Conference on Analysis of Images, Social Networks and Texts, AIST 2023, held in Yerevan, Armenia, during September 28-30, 2023.  The 24 full papers included in this book were carefully reviewed and selected from 93 submissions. They were organized in topical sections as follows: natural language processing; computer vision; data analysis and machine learning; network analysis; and theoretical machine learning and optimization. The book also contains one invited talk in full paper length.
Ignatov / Khachay / Savchenko Analysis of Images, Social Networks and Texts jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Invited Paper: Threatening Expression and Target Identi?cation in under-resource languages using NLP Techniques.- Natural Language Processing: Benchmarking Multi-Label Topic Classi?cation in Kyrgyz Language.- Transformers compression: A study of matrix decomposition methods using Fisher information.- Leveraging Lexical Taxonomy Data in Large Language Models for Hyponymy Prediction.- Content selection in abstractive summarization with biased encoder mixtures.- RuCAM: Comparative Argumentative Machine for the Russian Language.- Paraphrasers and Classi?ers: Controllable Text Generation for Text Style Transfer.- Less than Necessary or More than Su?cient: Validating Probing Dataset Size.- Unsupervised Ultra-Fine Entity Typing with Distributionally Induced Word Senses.- Static, dynamic, or contextualized: what is the best approach for discovering semantic shifts in Russian media?.- Controllable Story Generation Based on Perplexity Minimization.- Automatic Detection of Dialectal Features of Pskov Dialects in the Speech of Native Speakers.- Needle in a Haystack: Finding Suitable Idioms Based on Text Descriptions.- Computer Vision: DeepLOC: Deep Learning-based Bone Pathology Localization and Classi?cation in Wrist X-ray Images.- MiVOLO: Multi-input Transformer for Age and Gender Estimation.- Handwritten Text Recognition and Browsing in Archive of Prisoners’ Letters from Smolensk Convict Prison.- Greedy Algorithm for Fast Finding Curvilinear Symmetry of Binary Raster Images.-Data Analysis and Machine Learning: Ensemble Clustering with Heterogeneous Transfer Learning.- Detecting design patterns in Android applications with CodeBERT embeddings and CK metrics.- Metamorphic testing for recommender systems.- Application of Dynamic Graph CNN* and FICP for Detection and Research Archaeology Sites.- Network Analysis: Visualization-Driven Graph Sampling Strategy for Exploring Large-Scale Networks.- Limit Distributions of Friendship Index in Scale-Free Networks.- Theoretical Machine Learning and Optimization: The Problem of Finding Several Given Diameter Spanning Trees of Maximum Total Weight in a Complete Graph.- Is Can?eld Right? On the Asymptotic Coe?cients for the Maximum Antichain of Partitions and Related Counting Inequalitie.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.