E-Book, Englisch, Band 79, 439 Seiten
Husain / Khan Advances in Nanomaterials
1. Auflage 2016
ISBN: 978-81-322-2668-0
Verlag: Springer India
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, Band 79, 439 Seiten
Reihe: Advanced Structured Materials
ISBN: 978-81-322-2668-0
Verlag: Springer India
Format: PDF
Kopierschutz: 1 - PDF Watermark
This book provides a review of the latest research findings and key applications in the field of nanomaterials. The book contains twelve chapters on different aspects of nanomaterials. It begins with key fundamental concepts to aid readers new to the discipline of nanomaterials, and then moves to the different types of nanomaterials studied. The book includes chapters based on the applications of nanomaterials for nano-biotechnology and solar energy. Overall, the book comprises chapters on a variety of topics on nanomaterials from expert authors across the globe. This book will appeal to researchers and professional alike, and may also be used as a reference for courses in nanomaterials.
Prof. Mushahid Husain is the Vice Chancellor of M.J.P. Rohilkhand University, Bareilly. Formerly, He was a Senior Professor and Director, 'Centre for Nanoscience and Nanotechnology' at Jamia Millia Islamia (Central University), New Delhi. He has been instrumental in starting M.Tech. Nanotechnology course in 2007 in Jamia Millia Islamia. Prof. Husain has completed several major research projects on amorphous semiconductors funded by various government agencies like DST, DRDO etc. He has been Vice Chairman of Semiconductor Society of India for two consecutive terms (1999 to 2003). He is also holding various positions in different academic societies. In addition, he also held the office of the Vice-President of Indian Physical Society during the session 1990-92. At present, he is the President of Society for Nano Science and Technology and secretary of one of the prestigious 'Society for Semiconductor Devices'. He has made about 27 foreign visits including University of Cambridge - UK, University of Southampton - UK, University of Princeton, New Jersey, ICTP, Italy. UNAM-Mexico, SIRIM-Malaysia, National University-Singapore, National Tsing Hua University, Hsinchu, Taiwan, US Naval Research Lab. Washington and University of Arkansas, Fayetteville where he had delivered lectures. He has delivered 111 Invited Talks at National and International Forums. A number of popular talks on All India Radio and the National TV Channel (Doordarshan) have also been presented by him. Prof. Husain has about 182 Research Papers in reputed International Journals to his credit. He has produced 36 Ph.Ds. He has also edited one book on 'Advances in Physics of Materials.' r-latin;mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;mso-ansi-language:EN-US;mso-fareast-language: EN-US;mso-bidi-language:AR-SA'>Zishan Husain Khan is working as Associate Professor (Applied Physics) in the Department of Applied Sciences & Humanities, Faculty of Engineering & Technology, Jamia Millia Islamia, New Delhi-110025 (India). He specializes in nanotechnology with special emphasis of carbon nanotubes, semiconducting nanostructures and nano-chalcogenides. His work on the fabrication of a FET based on an individual carbon nanotube using e-beam lithography and its I-V characteristics was significant. He also studied the electrical transport properties and field emission properties of bulk carbon nanotubes. Dr. Khan has also contributed significantly in the field of oxide semiconductors and synthesized ZnO nanostructures for various applications. His contribution in the field of carbon nanotubes based sensors is notable. His recent work on OLEDs based on organic semiconductors and nano-memory devices based on nanochalcogenides is expected to have significant impact on emerging field of nanotechnology. Dr Khan has earned his Ph.D. on Amorphous Semiconductors from Jamia Millia Islmia, New Delhi-110025 (India) in 1996. He joined as a post-doctoral researcher at the Center of Nanoscience and Nanotechnology, National Tsing Hua University (NTHU), Hsinchu, Taiwan in Dec. 2001 and continued there up to Feb. 2005. While pursuing his Post-Doc, Dr. Khan worked extensively on different types of nanostructures with special focus of carbon nanotubes. He has published around 84 research papers in outstanding and high impact factor journals and made over 40 presentations in conferences and symposia, which includes invited talks in the conferences. Dr. Khan has been one of founder members of Center of Nanotechnology, King Abdulaziz University, Jeddah (Suadi Arabia). He has been the guest editor of International Journal of Nanoparticles (UK), International Journal of Nano-Biomaterials (UK), International Journal of Nanomanufacturing (UK), Journal of Nanomaterials (USA), Advanced Science Letters (USA). He is also a regular reviewer of many reputed International journals.
Autoren/Hrsg.
Weitere Infos & Material
1;Foreword;6
2;Preface;8
3;Acknowledgments;11
4;Contents;13
5;Editors and Contributors;15
6;1 Introduction to Nanomaterials;19
6.1;Abstract;19
6.2;1.1 Introduction;20
6.3;1.2 Nanomaterials: A Revolution in 21st Century;21
6.3.1;1.2.1 Melting Point of the Material;22
6.3.2;1.2.2 Optical Studies;22
6.3.3;1.2.3 The Giant Magneto-Resistance (GMR) Effect;23
6.4;1.3 Classification of Nanomaterials;23
6.5;1.4 Types of Nanomaterials;24
6.5.1;1.4.1 Carbon Nanomaterials;24
6.5.1.1;1.4.1.1 Fullerenes;24
6.5.1.2;1.4.1.2 Carbon Nanotubes;26
6.5.1.3;1.4.1.3 Nanodiamond;28
6.5.1.4;1.4.1.4 Graphene;30
6.5.2;1.4.2 ZnO Nanostructures;31
6.6;1.5 Potential Applications of Nanomaterials;34
6.7;1.6 Toxicity of Nanomaterials;35
6.8;1.7 Concluding Remarks;36
6.9;References;37
7;2 Carbon Nanomaterials Based on Carbon Nanotubes (CNTs);42
7.1;Abstract;42
7.2;2.1 Introduction;43
7.3;2.2 Fibers and Yarns (1D);43
7.3.1;2.2.1 Brief Introduction;43
7.4;2.3 Fabrication Technologies;44
7.4.1;2.3.1 Spinning from Solutions;44
7.4.2;2.3.2 Spinning from Arrays;50
7.4.3;2.3.3 Spinning from Aerog;57
7.4.4;2.3.4 Spinning from Cotton-Like Precursors;61
7.4.5;2.3.5 Spinning with Dielectrophoresis;63
7.4.6;2.3.6 Twisting/Rolling of Films;68
7.4.7;2.3.7 Summary;71
7.5;2.4 Films, Membranes, Sheets and Papers (2D);73
7.5.1;2.4.1 Brief Introduction;73
7.5.2;2.4.2 Fabrication Technologies;73
7.5.2.1;2.4.2.1 Wet Suspension Methods;73
7.5.2.2;2.4.2.2 Dry Methods;81
7.5.2.3;2.4.2.3 Direct Growth with CVD;83
7.6;2.5 Foams, Gels and Bulks (3D);89
7.6.1;2.5.1 Brief Introduction;89
7.6.2;2.5.2 3D Bulks;89
7.6.3;2.5.3 Foams;92
7.6.4;2.5.4 Gels;105
7.7;2.6 Potential Applications;109
7.8;2.7 Concluding Remarks;111
7.9;Acknowledgments;112
7.10;References;112
8;3 The Synthesis, Properties, and Applications of Heteroatom-Doped Graphenes;119
8.1;Abstract;119
8.2;3.1 Introduction;119
8.3;3.2 Heteroatom Doping of Graphene;120
8.4;3.3 Properties of Heteroatom-Doped Graphene;122
8.5;3.4 Synthesis of Heteroatom-Doped Graphene;126
8.6;3.5 Applications of Heteroatom-Doped Graphene;133
8.7;3.6 Perspective;141
8.8;References;141
9;4 Chalcogenides to Nanochalcogenides; Exploring Possibilities for Future R&D;150
9.1;Abstract;150
9.2;4.1 Introduction;151
9.3;4.2 Synthesis of Chalcogenide Glasses;154
9.3.1;4.2.1 Preparation of Chalcogenides Thin Films;155
9.3.1.1;4.2.1.1 Physical Vapour Condensation;155
9.3.1.2;4.2.1.2 Sputtering;156
9.3.1.3;4.2.1.3 Pulsed-Laser Deposition;157
9.3.1.4;4.2.1.4 Chemical Vapour Deposition;159
9.4;4.3 Electrical, Optical and Thermal Properties;160
9.4.1;4.3.1 Electrical Transport Properties;160
9.4.1.1;4.3.1.1 The CFO Model;160
9.4.1.2;4.3.1.2 The Davis-Mott Model;161
9.4.1.3;4.3.1.3 The Charged Dangling Band Model;162
9.4.1.4;4.3.1.4 The QMT Model;163
9.4.1.5;4.3.1.5 Elliot’s Theory;163
9.4.1.6;4.3.1.6 Conduction in Band Tails;164
9.4.1.7;4.3.1.7 Conduction in Localized States;164
9.4.2;4.3.2 Optical Properties;165
9.4.2.1;4.3.2.1 Optical Absorption and Optical Gap;166
9.4.2.2;4.3.2.2 Absorption Process;166
9.4.2.2.1;Fundamental Absorption Process;166
9.4.2.2.2;Exciton Absorption;168
9.4.2.2.3;Free Carrier Absorption;168
9.4.2.2.4;Absorption Process Involving Impurities;169
9.4.2.3;4.3.2.3 Optical Constants of Thin Films;170
9.4.3;4.3.3 Studies on Chalcogenides Films;171
9.4.4;4.3.4 Studies on Nanostructures of Chalcogenides;175
9.4.5;4.3.5 Thermal Properties;185
9.4.5.1;4.3.5.1 Differential Scanning Calorimetric Studies;188
9.4.5.2;4.3.5.2 Theoretical Consideration of Crystallization Kinetics;189
9.4.6;4.3.6 Studies on Bulk Chalcogenides;191
9.4.7;4.3.7 Studies on Nano-chalcogenides;195
9.5;4.4 Applications of Chalcogenides;200
9.5.1;4.4.1 Memories Based on Phase-Change in Chalcogenide Glasses;200
9.5.2;4.4.2 Memories Based on Electrical Switching in Chalcogenide Glasses;200
9.6;4.5 Conclusion;205
9.7;References;206
10;5 Metal Oxide Nanostructures: Growth and Applications;218
10.1;Abstract;218
10.2;5.1 Introduction to Metal Oxides;219
10.2.1;5.1.1 Metal Oxide Nanostructures;221
10.3;5.2 Growth of Metal Oxide Nanostructures;223
10.3.1;5.2.1 Chemical Vapor Deposition;223
10.4;5.3 Growth of Indium Oxide Nanostructures;225
10.4.1;5.3.1 Effect of Growth Ambient: Tunable Growth of Nanowires, Nanotubes and Octahedrons;225
10.4.2;5.3.2 Effect of Growth Time: Regular to Irregular Nanostructures;228
10.4.3;5.3.3 Effect of Growth Pressure: Nanoflute to Nanotube;229
10.4.4;5.3.4 Effect of Gas Flow Dynamics: Horizontal to Vertically Aligned Nanostructures;231
10.5;5.4 Growth of Zinc Oxide Nanostructures (ZNT);232
10.6;5.5 Growth of 3-D Indium-Zinc Oxide Nanostructures;233
10.7;5.6 Growth of Gallium Oxide Nanostructures;234
10.8;5.7 Application: Environmental Sensors;237
10.8.1;5.7.1 Hazardous Gas Sensors;237
10.8.2;5.7.2 Deep Ultraviolet (DUV) Photodetector;239
10.9;5.8 Summary;242
10.10;References;242
11;6 Metal Matrix Nanocomposites and Their Application in Corrosion Control;246
11.1;Abstract;246
11.2;6.1 Nanocomposites;247
11.3;6.2 Types of Nanocomposites;247
11.3.1;6.2.1 Ceramic-Matrix Nanocomposites (CMNCs);247
11.3.2;6.2.2 Metal-Matrix Nanocomposites (MMNCs);248
11.3.3;6.2.3 Polymer-Matrix Nanocomposites (PMNCs);248
11.4;6.3 Synthesis Routes for Fabricating Metal Matrix Nanocomposites;249
11.4.1;6.3.1 Solid State Methods;249
11.4.2;6.3.2 Liquid State Methods;250
11.5;6.4 Major Applications of Metal Matrix Nanocomposites;254
11.6;6.5 Corrosion;255
11.6.1;6.5.1 Mechanism of Corrosion;256
11.6.2;6.5.2 Tafel Plots;257
11.6.3;6.5.3 Formulas Used in Corrosion Measurements;257
11.7;6.6 Corrosion Control by Metal Matrix Nanocomposites;258
11.8;References;260
12;7 Diamond Nanogrinding;262
12.1;Abstract;262
12.2;7.1 Introduction;263
12.3;7.2 Piezoelectric Nanogrinding;264
12.4;7.3 Stress Analysis in a Nanogrinding Grain;265
12.4.1;7.3.1 Analysis of Loaded Nanogrinding Grains;265
12.5;7.4 Fracture Dominated Wear Model;272
12.6;7.5 Nanogrinding;273
12.6.1;7.5.1 Nanogrinding Apparatus;273
12.6.2;7.5.2 Nanogrinding Procedure;273
12.6.3;7.5.3 Stress Analysis;276
12.7;7.6 Porous Nanogrinding Tools;279
12.7.1;7.6.1 Dissolution Models for Quartz in Bonding Bridges;282
12.7.2;7.6.2 Preparation of Bonding Bridges for Nanogrinding Wheels;285
12.7.3;7.6.3 X-ray Diffraction of Bonding Systems;287
12.7.4;7.6.4 Refractory Bonding Systems—Verification and Comparison of Dissolution Models for Quartz;288
12.7.5;7.6.5 Fusible Bonding Systems—Verification and Comparison of Dissolution Models for Quartz;294
12.8;7.7 Laser Dressing of Nanogrinding Tools;296
12.8.1;7.7.1 Experimental Procedures;298
12.8.1.1;7.7.1.1 Measurement of Dressing Temperatures;298
12.8.1.2;7.7.1.2 Orientation Imaging Microscopy;299
12.8.1.3;7.7.1.3 Nanogrinding Experiments;299
12.8.2;7.7.2 Experimental Results and Discussion;300
12.8.2.1;7.7.2.1 Laser Dressing Temperatures;300
12.8.2.2;7.7.2.2 Orientation Imaging Microscopy of Laser-Dressed Materials;305
12.8.2.3;7.7.2.3 Nanogrinding Experiments;307
12.9;7.8 Future Directions;310
12.10;Acknowledgements;311
12.11;References;311
13;8 Epitaxial GaN Layers: Low Temperature Growth Using Laser Molecular Beam Epitaxy Technique and Characterizations;313
13.1;Abstract;313
13.2;8.1 Introduction;314
13.3;8.2 Experimental Section;316
13.4;8.3 Result and Discussion;318
13.4.1;8.3.1 Cleaning and Nitridation of Sapphire;318
13.4.2;8.3.2 Growth of GaN Films on Sapphire Using Liquid Ga Target;321
13.4.3;8.3.3 Growth of GaN Layers on Sapphire Using Solid HVPE GaN Target;326
13.4.3.1;8.3.3.1 Effect of Growth Temperature;326
13.4.3.2;8.3.3.2 Effect of Laser Repetition Rates;329
13.5;8.4 Conclusion and Future Remarks;336
13.6;Acknowledgments;337
13.7;References;337
14;9 Aperiodic Silicon Nanowire Arrays: Fabrication, Light Trapping Properties and Solar Cell Applications;342
14.1;Abstract;342
14.2;9.1 Introduction;343
14.3;9.2 Large Area Fabrication of Silicon Nanowire Arrays;344
14.4;9.3 Morphology and Structure of SiNWs;346
14.5;9.4 Fabrication Mechanism;349
14.6;9.5 Light Trapping and Enhanced Optical Absorption in SiNW Arrays;352
14.6.1;9.5.1 SiNW Arrays on Bulk Silicon Wafer;352
14.6.2;9.5.2 SiNW Arrays on Silicon Thin Film on Glass Substrates;355
14.6.3;9.5.3 Theoretical Modelling/Simulation of ARC/Light Trapping for MA-EWCE SiNW Arrays;356
14.7;9.6 Omni-directional Light Trapping Properties;356
14.8;9.7 Solar Cells Basics and Importance of Silicon Nanowires;357
14.8.1;9.7.1 Solar Cells Basic Parameters;358
14.8.2;9.7.2 Silicon Nanowire Arrays Based Solar Cell Concept;359
14.9;9.8 Silicon Nanowire Arrays Based Photovoltaic Devices: Recent Developments;360
14.10;9.9 Problems and Challenges of Aperiodic SiNW Arrays Based Solar Cells;363
14.11;9.10 Effective Surface Passivation of SiNW Arrays Based Solar Cells;365
14.12;9.11 Solar Cells Based on a Vertically Aligned Radial Hetero p-n Junction SiNW Arrays;367
14.13;9.12 Solar Cells Based on a Vertically Aligned p-n Junction SiNW Arrays on Cheap Glass Substrates;368
14.14;9.13 Concluding Remarks and Future Perspective;370
14.15;Acknowledgments;371
14.16;References;371
15;10 Recent Trends of Gelatin Nanoparticles in Biomedical Applications;377
15.1;Abstract;377
15.2;10.1 Introduction;377
15.3;10.2 Chemical Structure;379
15.4;10.3 Preparation of GNPs;379
15.4.1;10.3.1 Desolvation Method;380
15.4.2;10.3.2 Coacervation;380
15.4.3;10.3.3 Solvent Evaporation Method;380
15.4.4;10.3.4 Spontaneous Emulsification/Solvent Diffusion Method;381
15.4.5;10.3.5 Nanoprecipitation Method;381
15.4.6;10.3.6 Salting Out Method;382
15.5;10.4 Crosslinking with GNPs;382
15.6;10.5 Characterization;383
15.7;10.6 Applications of GNPs;383
15.7.1;10.6.1 GNPs for Drug Delivery for Cancer and Infectious Diseases;384
15.7.2;10.6.2 GNPs for Protein and Vaccine Delivery;385
15.7.3;10.6.3 GNPs for Gene Delivery;386
15.7.4;10.6.4 GNPs for Ocular Drug Delivery;387
15.7.5;10.6.5 GNPs for Pulmonary Drug Delivery;387
15.7.6;10.6.6 GNPs for Nutraceutical Delivery;388
15.7.7;10.6.7 GNPs for Enzyme Immobilization;388
15.8;10.7 Tissue Engineering;389
15.9;10.8 Conclusions;390
15.10;References;391
16;11 Deployment of New Carbon Nanostructure: Graphene for Drug Delivery and Biomedical Applications;394
16.1;Abstract;394
16.2;11.1 Introduction;394
16.3;11.2 Synthesis of Graphene;396
16.4;11.3 Functionalization of Graphene Sheets;396
16.5;11.4 Applications of Graphene Sheet;399
16.5.1;11.4.1 Graphene in Drug Delivery: Amine-Functionalized Graphene for the Delivery of Amphotericin B for the Treatment of Visceral Leishmaniasis: In Vivo and in Vitro Studies;399
16.6;11.5 Biomedical Application of Graphene;400
16.6.1;11.5.1 Immobilization of Beta-Galactosidase onto Functionalized Graphene Nano-sheets for Analytical Applications;400
16.6.2;11.5.2 Functionalized Graphene Sheets for the Immobilization of Pharmaceutically Important Enzyme, ?-Amylase;403
16.7;11.6 Conclusions;404
16.8;Acknowledgments;405
16.9;References;405
17;12 Optical Coherence Tomography as Glucose Sensor in Blood;407
17.1;Abstract;407
17.2;12.1 Introduction;408
17.3;12.2 OCT's Basic Principle: Mechanism of Time Domain OCT;409
17.4;12.3 Glucose Levels in Blood;410
17.5;12.4 Application of OCT for Glucose Monitoring;410
17.6;12.5 SS-OCT in Glucose Sensing;411
17.7;12.6 Glucose Quantification in Stagnant Blood;411
17.7.1;12.6.1 Samples Preparation;411
17.7.2;12.6.2 Measurement System;412
17.7.3;12.6.3 Signal Processing and Results;413
17.7.4;12.6.4 Discussions;418
17.8;12.7 Microscopic Images for Qualitative Monitoring;420
17.8.1;12.7.1 Materials and Methods;420
17.8.2;12.7.2 Results and Discussions;421
17.9;12.8 Flow Phantom Measurements;423
17.9.1;12.8.1 Samples Preparation;424
17.9.2;12.8.2 Measurements and Signal Processing;424
17.9.3;12.8.3 Results and Discussion;427
17.10;12.9 In Vivo Blood Glucose Quantification;429
17.10.1;12.9.1 The Dorsal Skinfold Mouse Window Chamber Model;429
17.10.2;12.9.2 Animal Model;431
17.10.3;12.9.3 OCT Imaging System;431
17.10.4;12.9.4 Speckle Variance OCT: Blood Vessel Images;431
17.10.5;12.9.5 Results and Discussions;432
17.11;Acknowledgments;435
17.12;References;435
18;Author Index;439




