Humphreys | Linear Algebraic Groups | Buch | 978-0-387-90108-4 | sack.de

Buch, Englisch, Band 21, 248 Seiten, Format (B × H): 161 mm x 240 mm, Gewicht: 1250 g

Reihe: Graduate Texts in Mathematics

Humphreys

Linear Algebraic Groups


1975
ISBN: 978-0-387-90108-4
Verlag: Springer

Buch, Englisch, Band 21, 248 Seiten, Format (B × H): 161 mm x 240 mm, Gewicht: 1250 g

Reihe: Graduate Texts in Mathematics

ISBN: 978-0-387-90108-4
Verlag: Springer


James E. Humphreys is presently Professor of Mathematics at the University of Massachusetts at Amherst. Before this, he held the posts of Assistant Professor of Mathematics at the University of Oregon and Associate Professor of Mathematics at New York University. His main research interests include group theory and Lie algebras. He graduated from Oberlin College in 1961. He did graduate work in philosophy and mathematics at Cornell University and later received hi Ph.D. from Yale University if 1966. In 1972, Springer-Verlag published his first book, "Introduction to Lie Algebras and Representation Theory" (graduate Texts in Mathematics Vol. 9).

Humphreys Linear Algebraic Groups jetzt bestellen!

Zielgruppe


Graduate


Autoren/Hrsg.


Weitere Infos & Material


I. Algebraic Geometry.- 0. Some Commutative Algebra.- 1. Affine and Projective Varieties.- 2. Varieties.- 3. Dimension.- 4. Morphisms.- 5. Tangent Spaces.- 6. Complete Varieties.- II. Affine Algebraic Groups.- 7. Basic Concepts and Examples.- 8. Actions of Algebraic Groups on Varieties.- III. Lie Algebras.- 9. Lie Algebra of an Algebraic Group.- 10. Differentiation.- IV. Homogeneous Spaces.- 11. Construction of Certain Representations.- 12. Quotients.- V. Characteristic 0 Theory.- 13. Correspondence between Groups and Lie Algebras.- 14. Semisimple Groups.- VI. Semisimple and Unipotent Elements.- 15. Jordan-Chevalley Decomposition.- 16. Diagonalizable Groups.- VII. Solvable Groups.- 17. Nilpotent and Solvable Groups.- 18. Semisimple Elements.- 19. Connected Solvable Groups.- 20. One Dimensional Groups.- VIII. Borel Subgroups.- 21. Fixed Point and Conjugacy Theorems.- 22. Density and Connectedness Theorems.- 23. Normalizer Theorem.- IX. Centralizers of Tori.- 24. Regular and Singular Tori.- 25. Action of a Maximal Torus on G/?.- 26. The Unipotent Radical.- X. Structure of Reductive Groups.- 27. The Root System.- 28. Bruhat Decomposition.- 29. Tits Systems.- 30. Parabolic Subgroups.- XI. Representations and Classification of Semisimple Groups.- 31. Representations.- 32. Isomorphism Theorem.- 33. Root Systems of Rank 2.- XII. Survey of Rationality Properties.- 34. Fields of Definition.- 35. Special Cases.- Appendix. Root Systems.- Index of Terminology.- Index of Symbols.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.