Hulsbergen | Conjectures in Arithmetic Algebraic Geometry | Buch | 978-3-663-09507-1 | sack.de

Buch, Englisch, Band 18, 246 Seiten, Format (B × H): 170 mm x 244 mm, Gewicht: 448 g

Reihe: Aspects of Mathematics

Hulsbergen

Conjectures in Arithmetic Algebraic Geometry

A Survey
2. Auflage 1994. Softcover Nachdruck of the original 2. Auflage 1994
ISBN: 978-3-663-09507-1
Verlag: Vieweg+Teubner Verlag

A Survey

Buch, Englisch, Band 18, 246 Seiten, Format (B × H): 170 mm x 244 mm, Gewicht: 448 g

Reihe: Aspects of Mathematics

ISBN: 978-3-663-09507-1
Verlag: Vieweg+Teubner Verlag


In this expository text we sketch some interrelations between several famous conjectures in number theory and algebraic geometry that have intrigued math­ ematicians for a long period of time. Starting from Fermat's Last Theorem one is naturally led to introduce L­ functions, the main, motivation being the calculation of class numbers. In partic­ ular, Kummer showed that the class numbers of cyclotomic fields play a decisive role in the corroboration of Fermat's Last Theorem for a large class of exponents. Before Kummer, Dirichlet had already successfully applied his L-functions to the proof of the theorem on arithmetic progressions. Another prominent appearance of an L-function is Riemann's paper where the now famous Riemann Hypothesis was stated. In short, nineteenth century number theory showed that much, if not all, of number theory is reflected by properties of L-functions. Twentieth century number theory, class field theory and algebraic geome­ try only strengthen the nineteenth century number theorists's view. We just mention the work of E. H~cke, E. Artin, A. Weil and A. Grothendieck with his collaborators. Heeke generalized Dirichlet's L-functions to obtain results on the distribution of primes in number fields. Artin introduced his L-functions as a non-abelian generalization of Dirichlet's L-functions with a generalization of class field theory to non-abelian Galois extensions of number fields in mind.

Hulsbergen Conjectures in Arithmetic Algebraic Geometry jetzt bestellen!

Zielgruppe


Graduate

Weitere Infos & Material


1 The zero-dimensional case: number fields.- 2 The one-dimensional case: elliptic curves.- 3 The general formalism of L-functions, Deligne cohomology and Poincaré duality theories.- 4 Riemann-Roch, K-theory and motivic cohomology.- 5 Regulators, Deligne’s conjecture and Beilinson’s first conjecture.- 6 Beilinson’s second conjecture.- 7 Arithmetic intersections and Beilinson’s third conjecture.- 8 Absolute Hodge cohomology, Hodge and Tate conjectures and Abel-Jacobi maps.- 9 Mixed realizations, mixed motives and Hodge and Tate conjectures for singular varieties.- 10 Examples and Results.- 11 The Bloch-Kato conjecture.


Dr. Wilfried Hulsbergen is teaching at the KMA, Breda,Niederlande.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.