Hughes / Swetnam / Diaz | Dendroclimatology | E-Book | www2.sack.de
E-Book

E-Book, Englisch, Band 11, 368 Seiten

Reihe: Developments in Paleoenvironmental Research

Hughes / Swetnam / Diaz Dendroclimatology

Progress and Prospects
1. Auflage 2010
ISBN: 978-1-4020-5725-0
Verlag: Springer Netherlands
Format: PDF
Kopierschutz: 1 - PDF Watermark

Progress and Prospects

E-Book, Englisch, Band 11, 368 Seiten

Reihe: Developments in Paleoenvironmental Research

ISBN: 978-1-4020-5725-0
Verlag: Springer Netherlands
Format: PDF
Kopierschutz: 1 - PDF Watermark



A top priority in climate research is obtaining broad-extent and long-term data to support analyses of historical patterns and trends, and for model development and evaluation. Along with directly measured climate data from the present and recent past, it is important to obtain estimates of long past climate variations spanning multiple centuries and millennia. These longer time perspectives are needed for assessing the unusualness of recent climate changes, as well as for providing insight on the range, variation and overall dynamics of the climate system over time spans exceeding available records from instruments, such as rain gauges and thermometers. Tree rings have become increasingly valuable in providing this long-term information because extensive data networks have been developed in temperate and boreal zones of the Earth, and quantitative methods for analyzing these data have advanced. Tree rings are among the most useful paleoclimate information sources available because they provide a high degree of chronological accuracy, high replication, and extensive spatial coverage spanning recent centuries. With the expansion and extension of tree-ring data and analytical capacity new climatic insights from tree rings are being used in a variety of applications, including for interpretation of past changes in ecosystems and human societies.  This volume presents an overview of the current state of dendroclimatology, its contributions over the last 30 years, and its future potential. The material included is useful not only to those who generate tree-ring records of past climate-dendroclimatologists, but also to users of their results-climatologists, hydrologists, ecologists and archeologists. 'With the pressing climatic questions of the 21st century demanding a deeper understanding of the climate system and our impact upon it, this thoughtful volume comes at critical moment. It will be of fundamental importance in not
only guiding researchers, but in educating scientists and the interested lay person on the both incredible power and potential pitfalls of reconstructing climate using tree-ring analysis.', Glen M. MacDonald, UCLA Institute of the Environment, CA, USA 'This is an up-to-date treatment of all branches of tree-ring science, by the world's experts in the field, reminding us that tree rings are the most important source of proxy data on climate change.  Should be read by all budding dendrochronology scientists.', Alan Robock, Rutgers University, NJ, USA      

Malcolm K. Hughes: Regents' Professor of Dendrochronology and Director Emeritus, Laboratory of Tree-Ring Research, University of Arizona is a paleoclimatologist specializing in the use of tree rings and other annual records to reconstruct and understand the past behavior of the climate system on geographic scales from local to global, and from time scales ranging from years to millennia. He has carried out research in Europe, North America, Russia, China, India and the Eastern Mediterranean region. Professor Hughes is a Fellow of the American Geophysical Union and Chair-Elect of the Section on Geology and Geography of the American Association for the Advancement of Science. Thomas W. Swetnam, Professor of Dendrochronology and Director of Laboratory of Tree-Ring Research, University of Arizona, is a forest ecologist and dendrochronologist specializing in the study of forest fires, insect outbreaks, and forest demography and the climatic and human causes of variations in forest ecosystems; graduate training in forestry, watershed management, and dendrochronology at the University of Arizona; has carried out extensive research in western North America, and in areas of South America and Siberia, Russia. Henry F. Diaz is a research climatologist with the Cooperative Institute for Research in Environmental Sciences at the University of Colorado-Boulder. He is a recognized expert on the El Niño phenomenon, modern and paleo-climate changes, climate impacts, and other topics, and has published dozens of scientific journal articles on various topics related to the subject of climatic variations. He has edited several books, on topics such as El Niño, Climate Change and Water Resources, Climate Change in Mountains, and Climate Extremes and Society. He retired from the National Oceanic and Atmospheric Administration (NOAA) in 2007 after a distinguished 33 years career in the federal civil service. Dr Diaz is a Fellow of the American Meteorological Society.

Hughes / Swetnam / Diaz Dendroclimatology jetzt bestellen!

Weitere Infos & Material


1;Preface;5
2;Contents;7
3;Contributors;9
4;Part I Introductory Section;13
4.1;1 High-Resolution Paleoclimatology;14
4.1.1;1.1 Introduction;14
4.1.2;1.2 Data Sources for High-Resolution Paleoclimatology;16
4.1.3;1.3 Chronology and Replication;16
4.1.4;1.4 High-Resolution Sampling;17
4.1.5;1.5 Relationships Between Natural Archives and Climate;18
4.1.6;1.6 Uniformitarianism;19
4.1.7;1.7 Frequency Response;21
4.1.8;1.8 High-Resolution Proxies: Challenges and Opportunities;22
4.1.9;References;24
4.2;2 Dendroclimatology in High-Resolution Paleoclimatology;27
4.2.1;2.1 Introduction;27
4.2.2;2.2 Sample Design in Dendroclimatology;28
4.2.2.1;2.2.1 Natural Archives and Proxy Climate Records;28
4.2.2.2;2.2.2 Single Site Chronologies;29
4.2.2.3;2.2.3 Networks and the Relationship Between Crossdating and the Emergence of Climate Signal from Networks of Tree-Ring Data;31
4.2.3;2.3 Climate Signal in Tree-Ring Properties;33
4.2.3.1;2.3.1 Identifying Signal---An Empirical-Statistical Approach;33
4.2.3.2;2.3.2 Identifying Climate Signal---Process-Modeling Approaches;34
4.2.4;2.4 Stability of the Climate Signal;35
4.2.4.1;2.4.1 Temporal Stability;35
4.2.4.2;2.4.2 Recent Reports of Divergence Between Temperature and Tree-Ring Density and Width;35
4.2.5;2.5 The Quest for Unbiased Chronologies;37
4.2.5.1;2.5.1 The Problem;37
4.2.6;2.6 Final Thoughts;39
4.2.7;References;41
5;Part II Scientific Bases of Dendroclimatology;45
5.1;3 How Well Understood Are the Processes that Create Dendroclimatic Records? A Mechanistic Model of the Climatic Control on Conifer Tree-Ring Growth Dynamics;46
5.1.1;3.1 Introduction;46
5.1.1.1;3.1.1 The Substrate Source-Sink Hypothesis;47
5.1.1.2;3.1.2 The Cambial Control Hypothesis;49
5.1.2;3.2 Cambial Activity;51
5.1.3;3.3 Cell Expansion;55
5.1.4;3.4 Cell Wall Thickening;58
5.1.5;3.5 Effect of Climatic Factors on Tree-Ring Structure (Light, Temperature, and Water);61
5.1.5.1;3.5.1 Temperature;61
5.1.5.2;3.5.2 Water;62
5.1.5.3;3.5.3 Light;63
5.1.6;3.6 Toward a Quantitative Description of Cambial Activity and Xylem Differentiation Under Environmental Control;63
5.1.7;3.7 Process Model Description;66
5.1.7.1;3.7.1 Growth (Environmental) Block;66
5.1.7.2;3.7.2 Cambial Block;68
5.1.8;3.8 Model Applications;70
5.1.8.1;3.8.1 Local Simulations;71
5.1.8.2;3.8.2 Mesoscale Network Simulations;74
5.1.8.3;3.8.3 Large Network Intercomparisons;75
5.1.8.4;3.8.4 Uncertainties and Caveats;75
5.1.9;3.9 Conclusion;77
5.1.10;References;78
5.2;4 Uncertainty, Emergence, and Statistics in Dendrochronology;85
5.2.1;4.1 Introduction;86
5.2.2;4.2 Uncertainty;87
5.2.3;4.3 Emergence;89
5.2.4;4.4 Statistics;94
5.2.5;4.5 Correlation and Response Function Analysis;95
5.2.6;4.6 Response Functions and Empirical Signal Strength;103
5.2.7;4.7 Additional Response Function Interpretations;109
5.2.8;4.8 Some Implications for Climate Reconstruction;111
5.2.9;4.9 Concluding Remarks;113
5.2.10;Appendix;114
5.2.11;References;117
5.3;5 A Closer Look at Regional Curve Standardization of Tree-Ring Records: Justification of the Need, a Warning of Some Pitfalls, and Suggested Improvements in Its Application;121
5.3.1;5.1 Introduction;122
5.3.2;5.2 Frequency Limitation in Curve-Fitting Standardization;123
5.3.3;5.3 Background and Description of Regional Curve Standardization;124
5.3.4;5.4 Potential Biases in RCS;125
5.3.4.1;5.4.1 'Trend-in-Signal' Bias;126
5.3.4.2;5.4.2 'Differing-Contemporaneous-Growth-Rate' Bias;129
5.3.4.3;5.4.3 'Modern-Sample' Bias;130
5.3.4.3.1;5.4.3.1 Relationship Between Growth Rate and Longevity;130
5.3.4.3.2;5.4.3.2 Growth Rate/Longevity Association Distorts RCS Curves;132
5.3.5;5.5 Particular Problems Associated with the Application of RCS to Modern (i.e., Living-Tree) Sample Data;135
5.3.6;5.6 Examples of Issues that Arise in Various Applications of RCS;137
5.3.6.1;5.6.1 Inappropriate RCS Definition;137
5.3.6.2;5.6.2 Application of RCS Across Wide Species and Climate Ranges;140
5.3.6.3;5.6.3 Adaption of RCS to Account for Non-climate Bias;142
5.3.7;5.7 Discussion and Suggested Directions for RCS Development;145
5.3.8;5.8 Conclusions;149
5.3.9;Appendix: Signal-Free Standardization;150
5.3.9.1;Background and Rationale;150
5.3.9.2;Implementing Signal-Free Standardization;151
5.3.10;References;151
5.4;6 Stable Isotopes in Dendroclimatology: Moving Beyond `Potential';154
5.4.1;6.1 Scope and Background;155
5.4.2;6.2 Theoretical Background;155
5.4.2.1;6.2.1 Stable Carbon Isotope Theory;156
5.4.2.2;6.2.2 Stable Oxygen and Hydrogen Isotope Theory;157
5.4.3;6.3 Sampling and Measurement;158
5.4.3.1;6.3.1 A Note on New Measurement Techniques;160
5.4.3.2;6.3.2 Data Treatment of Stable Isotope Time Series;162
5.4.4;6.4 Progress to Date;163
5.4.5;6.5 Future Directions;167
5.4.5.1;6.5.1 Climate of the Moist Midlatitudes;169
5.4.5.2;6.5.2 Different Climate Signals;170
5.4.5.3;6.5.3 Tropical Isotope Dendroclimatology;171
5.4.5.4;6.5.4 Long-Term Response of d13C to Rising CO2 Concentrations;172
5.4.6;6.6 Is It Worth It? A Reply to Hughes (2002);173
5.4.7;References;174
6;Part III Reconstruction of Climate Patterns and Values Relative to Today's Climate;180
6.1;7 Dendroclimatology from Regional to Continental Scales: Understanding Regional Processes to Reconstruct Large-Scale Climatic Variations Across the Western Americas;181
6.1.1;7.1 Introduction;182
6.1.2;7.2 Oscillatory Modes of Climate Variability Across the Western Cordilleras;184
6.1.2.1;7.2.1 El Niño/Southern Oscillation (ENSO);185
6.1.2.2;7.2.2 Pacific Interdecadal Mode;185
6.1.2.3;7.2.3 Annular Modes;188
6.1.3;7.3 Tree-Ring Records Across the Western Americas;189
6.1.3.1;7.3.1 Temperature-Sensitive Records;192
6.1.3.1.1;7.3.1.1 Extratropical Pacific Ocean;194
6.1.3.1.2;7.3.1.2 Tropical Pacific Ocean;200
6.1.3.1.3;7.3.1.3 High-Latitude Oscillations;201
6.1.3.2;7.3.2 Precipitation-Sensitive Records;204
6.1.3.2.1;7.3.2.1 Subtropical Precipitation and ENSO;213
6.1.3.2.2;7.3.2.2 Dominant Oscillations in Precipitation Variations;217
6.1.4;7.4 Future Research;222
6.1.5;7.5 Discussion and Conclusions;225
6.1.6;References;228
7;Part IV Applications of Dendroclimatology;234
7.1;8 Application of Streamflow Reconstruction to Water Resources Management;235
7.1.1;8.1 Introduction;236
7.1.2;8.2 Historical Background of Streamflow Reconstructions;237
7.1.3;8.3 Contributions to the Study of Water Resources;240
7.1.3.1;8.3.1 Extensions of Gauge Flow Records;240
7.1.3.2;8.3.2 Probabilistic Interpretation of Streamflow Reconstructions: Example for the Colorado River;246
7.1.3.3;8.3.3 Applications to Water Resource Management: A Case Study Using the Denver Water Board;251
7.1.3.4;8.3.4 Informing the Public;254
7.1.4;8.4 Challenges;256
7.1.4.1;8.4.1 High Flows;256
7.1.4.2;8.4.2 Seasonality;256
7.1.4.3;8.4.3 Uncertainty;257
7.1.4.4;8.4.4 Communication;259
7.1.4.5;8.4.5 Climate Change;259
7.1.5;8.5 Conclusion;260
7.1.6;References;261
7.2;9 Climatic Inferences from Dendroecological Reconstructions;266
7.2.1;9.1 Introduction;267
7.2.2;9.2 Examples of Dendroecological-Climate Reconstructions;269
7.2.2.1;9.2.1 Fire History and Fire Climatology;269
7.2.2.2;9.2.2 Western Spruce Budworm Outbreaks and Climatic Entrainment;274
7.2.2.2.1;9.2.2.1 Confounding of Dendroclimatic Signals by Insect Outbreaks;278
7.2.2.3;9.2.3 Regional Tree Demography and Climate Effects;279
7.2.3;9.3 The Late Eighteenth-Century, Early Nineteenth-Century Fire Gap;286
7.2.4;9.4 Ecologically Effective Climate Change;291
7.2.5;References;293
7.3;10 North American Tree Rings, Climatic Extremes, and Social Disasters;299
7.3.1;10.1 Introduction;299
7.3.2;10.2 Tree-Ring Analyses of Climate Extremes and Human Impacts;305
7.3.3;10.3 Social Impacts of Climate Extremes During the Historic Era;309
7.3.4;10.4 Suspected Social Impacts of Drought Extremes During the Precolonial Era;320
7.3.5;10.5 Summary;324
7.3.6;References;325
8;Part V Overview;330
8.1;11 Tree Rings and Climate: Sharpening the Focus;331
8.1.1;11.1 Introduction;331
8.1.2;11.2 Spectrum of Climate Variability;332
8.1.3;11.3 Reconstruction of Regional to Hemispheric Temperature for Recent Centuries;333
8.1.4;11.4 Causes of Climate Variability in the Past Millennium;335
8.1.5;11.5 Climate Sensitivity;336
8.1.6;11.6 Circulation Features and Regional Climates;337
8.1.7;11.7 The Current State of Play;339
8.1.8;11.8 The Importance of Networks;340
8.1.9;11.9 Growth in the Applications of Dendroclimatology: the 1990s to Present;341
8.1.10;11.10 Prospects for Dendroclimatology;344
8.1.11;References;346
9;Index;354



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.