E-Book, Englisch, Band 233, 429 Seiten
Hughes / Mol / Zheludkevich Active Protective Coatings
1. Auflage 2016
ISBN: 978-94-017-7540-3
Verlag: Springer Netherlands
Format: PDF
Kopierschutz: 1 - PDF Watermark
New-Generation Coatings for Metals
E-Book, Englisch, Band 233, 429 Seiten
Reihe: Springer Series in Materials Science
ISBN: 978-94-017-7540-3
Verlag: Springer Netherlands
Format: PDF
Kopierschutz: 1 - PDF Watermark
This book covers a broad range of materials science that has been brought to bear on providing solutions to the challenges of developing self-healing and protective coatings for a range of metals. The book has a strong emphasis on characterisation techniques, particularly new techniques that are beginning to be used in the coatings area. It features many contributions written by experts from various industrial sectors which examine the needs of the sectors and the state of the art. The development of self-healing and protective coatings has been an expanding field in recent years and applies a lot of new knowledge gained from other fields as well as other areas of materials science to the development of coatings. It has borrowed from fields such as the food and pharmaceutical industries who have used, polymer techniques, sol-gel science and colloidosome technology for a range encapsulation techniques. It has also borrowed from fields like hydrogen storage such as from the development of hierarchical and other materials based on organic templating as 'nanocontainers' for the delivery of inhibitors. In materials science, recent developments in high throughput and other characterisation techniques, such as those available from synchrotrons, are being increasing used for novel characterisation - one only needs to look at the application of these techniques in self healing polymers to gauge wealth of new information that has been gained from these techniques. This work is largely driven by the need to replace environmental pollutants and hazardous chemicals that represent risk to humans such as chromate inhibitors which are still used in some applications.
Autoren/Hrsg.
Weitere Infos & Material
1;Contents;6
2;Contributors;8
3;1 Introduction;10
3.1;1.1 Introduction;10
3.2;1.2 The Problem;12
3.3;1.3 What Are Smart Coatings?;14
3.4;1.4 Biomimicry;17
3.5;1.5 The Structure of the Book;18
3.6;References;20
4;Part IFundamentals;23
5;2 Fundamentals of Corrosion Kinetics;24
5.1;2.1 Introduction;24
5.2;2.2 Corrosion Reactions;25
5.3;2.3 Activation Controlled Kinetics;28
5.4;2.4 Mixed Potential Theory;29
5.5;2.5 Mass Transport Controlled Kinetics;32
5.6;2.6 Inhibition;35
5.7;2.7 Passivity;36
5.8;Recommended Reading;39
6;3 The Atmosphere Conditions and Surface Interactions;40
6.1;3.1 Introduction;40
6.2;3.2 Factors Controlling the Deposition of Pollutants on the Surface of a Coated Metal;41
6.3;3.3 Aerosol Chemistry and Reactions in Moisture Layers;42
6.4;3.4 Key Aqueous/Gas Reactions;44
6.4.1;3.4.1 Sulfuric Acid–Ammonia–Water System;44
6.5;3.5 Reactions in Marine Aerosols;45
6.6;3.6 Aerosol Transportation;46
6.6.1;3.6.1 General Scale of Movement of Gases and Particles;46
6.6.2;3.6.2 Analytical Approach to Gas Transport;47
6.6.3;3.6.3 Aerosol Transport;47
6.6.4;3.6.4 Deposition of Pollutants;48
6.6.4.1;3.6.4.1 Rain;48
6.6.4.2;3.6.4.2 Gas and Particle Deposition;48
6.6.4.3;3.6.4.3 Deposition of Gases onto Wet and Dry Surfaces;50
6.6.4.4;3.6.4.4 Comparison of Deposition Modes;51
6.6.4.5;3.6.4.5 Cloud Nucleation and Rain Chemistry;52
6.6.4.6;3.6.4.6 Role of Rain and Wind in Surface Cleaning;54
6.6.5;3.6.5 Forms of Moisture on Surfaces;54
6.6.5.1;3.6.5.1 Re-Wetting of Surfaces and Condensation;54
6.6.5.2;3.6.5.2 Surface Temperature of Plates;55
6.6.5.3;3.6.5.3 Evaporation and Condensation on a Porous Surface;56
6.6.6;3.6.6 Summary of Environmental Conditions;57
6.7;3.7 Relevance of Environmental Conditions to Moisture Ingress and Inhibitor Stability;59
6.8;3.8 Damage to Coatings;61
6.9;3.9 Summary;61
6.10;References;62
7;4 Corrosion Inhibitors;65
7.1;4.1 Classification of Corrosion Inhibitors;65
7.1.1;4.1.1 Definition of Corrosion Inhibitor;65
7.2;4.2 Effect of the Inhibitor on Partial Electrochemical Reactions;67
7.2.1;4.2.1 Cathodic Inhibitors;67
7.2.2;4.2.2 Anodic Inhibitors;67
7.2.3;4.2.3 Mixed Inhibitors;68
7.3;4.3 Inhibition Mechanisms;70
7.3.1;4.3.1 Inhibitors for Acid Environments;70
7.3.1.1;4.3.1.1 Adsorption of Inhibitors;70
7.3.1.2;4.3.1.2 Film Formation;72
7.3.2;4.3.2 Inhibitors for Neutral Environments;74
7.3.2.1;4.3.2.1 Adsorption of Inhibitors;74
7.3.2.2;4.3.2.2 Precipitation of Protective Salt Films;76
7.3.2.3;4.3.2.3 Film Precipitation or Polymerization;78
7.3.2.4;4.3.2.4 Passivation;78
7.3.2.5;4.3.2.5 Synergistic Effect of Mixtures of Inhibitors;84
7.3.3;4.3.3 Gas Phase Inhibitors;86
7.3.3.1;4.3.3.1 Volatile Corrosion Inhibitors;86
7.3.3.2;4.3.3.2 Migrating Corrosion Inhibitors;87
7.4;References;89
8;5 Formulating Surface Coatings;91
8.1;5.1 Introduction;91
8.2;5.2 Component Selection: the Composition of Paints;93
8.2.1;5.2.1 Resins;93
8.2.2;5.2.2 Pigments;95
8.2.2.1;5.2.2.1 White Pigments;95
8.2.2.2;5.2.2.2 Coloured Pigments;96
8.2.3;5.2.3 Solvents;96
8.2.4;5.2.4 Additives;97
8.2.5;5.2.5 Encapsulated Liquids;97
8.3;5.3 Formulation and Production: Disperse Phases;97
8.3.1;5.3.1 Grinding and Dispersing Pigments;98
8.3.1.1;5.3.1.1 Batch Ball Mills;98
8.3.1.2;5.3.1.2 Continuous Mills;99
8.3.1.3;5.3.1.3 Horizontal Bead Mills with ‘Rotating Gap’;100
8.3.1.4;5.3.1.4 Immersion Mills;100
8.3.1.5;5.3.1.5 High Shear Rate Pre-milling;101
8.3.1.6;5.3.1.6 High Shear Stress Milling;101
8.3.1.7;5.3.1.7 Testing the End Point;101
8.3.2;5.3.2 Colloidal Stabilization;102
8.3.2.1;5.3.2.1 Settling/Sedimentation;102
8.3.2.2;5.3.2.2 Miscibility;102
8.3.2.3;5.3.2.3 Dispersants;103
8.3.3;5.3.3 Modes of Adsorption of Surfactants and Dispersants at Interfaces;103
8.3.3.1;5.3.3.1 Acid–Base (Lewis) Interaction’ Adsorption/Chemisorption;104
8.3.3.2;5.3.3.2 Anionic Surfactants and Dispersants;104
8.3.3.3;5.3.3.3 Cationic Surfactants;104
8.3.3.4;5.3.3.4 Steric Enthalpic Stabilizers;104
8.3.3.5;5.3.3.5 Entropic Stabilizers;105
8.3.3.6;5.3.3.6 Polymer Resin Dispersancy;105
8.4;5.4 Developing a Formulation;105
8.5;5.5 Summary;109
8.6;References;109
9;Part IIAdvances in Active Protective Coatings;111
10;6 Fostering Green Inhibitors for Corrosion Prevention;112
10.1;6.1 Introduction;112
10.1.1;6.1.1 Importance of Corrosion Inhibitors;114
10.1.2;6.1.2 New Trends Towards “Green” Inhibitors;114
10.2;6.2 Biological Inhibitors;115
10.2.1;6.2.1 Chitosan;115
10.2.2;6.2.2 Aminoacids;118
10.2.3;6.2.3 Other Biological Inhibitors;121
10.2.4;6.2.4 Bacteria and Fungi;122
10.3;6.3 Vegetable Inhibitors;123
10.3.1;6.3.1 Extracts of Plants;123
10.3.2;6.3.2 Shells and Seeds;125
10.3.3;6.3.3 Tannins;127
10.4;6.4 Pharmaceutical Drugs;128
10.5;6.5 Rare-Earth Inhibitors;131
10.5.1;6.5.1 Rare-Earth Cations;131
10.5.2;6.5.2 Rare-Earth Conversion Coatings;132
10.5.3;6.5.3 Rare-Earth Compounds Additives in Coatings;134
10.6;6.6 Mixtures and Synergies of New Inhibitors;135
10.7;6.7 Future Trends;137
10.8;Acknowledgement;138
10.9;References;138
11;7 Active Protective Coatings: Sense and Heal Concepts for Organic Coatings;143
11.1;7.1 Introduction;143
11.2;7.2 Organic Polymeric Coatings;144
11.3;7.3 Sensing Mechanisms Incorporated into Organic Coatings;146
11.3.1;7.3.1 Sensor Systems Based on Colour Response;147
11.3.2;7.3.2 Sensor Systems Based on Non-colour Response;148
11.4;7.4 Responsive Mechanisms Incorporated into Organic Coatings;148
11.4.1;7.4.1 Corrosion Triggered Protective Response: Underlying Metal Protection;150
11.4.1.1;7.4.1.1 Controlled Release by Desorption and Ion Exchange;151
11.4.1.2;7.4.1.2 Controlled Release by Environmental pH Changes;151
11.4.2;7.4.2 Response Aiming a Closure of the Passive Protective Surface;153
11.4.2.1;7.4.2.1 Surface Coverage;153
11.4.2.2;7.4.2.2 Gap Filling;154
11.4.3;7.4.3 Recovery of Other Functionalities;156
11.5;7.5 Concluding Remarks;157
11.6;Acknowledgments;157
11.7;References;157
12;8 Delivery Systems for Self Healing Protective Coatings;161
12.1;8.1 Introduction;161
12.2;8.2 Overview of Self Healing Coatings;162
12.2.1;8.2.1 Nanotraps;163
12.2.2;8.2.2 Water Displacing from Defects;164
12.2.3;8.2.3 Self-sealing;165
12.3;8.3 Self Healing in Polymer Networks;167
12.4;8.4 Coating Systems with Encapsulated Inhibitors;169
12.4.1;8.4.1 Volume of Self Healing Agent Required;171
12.5;8.5 Encapsulation Systems;173
12.5.1;8.5.1 Sol-Gel: Transition Metals;173
12.5.2;8.5.2 Sol-Gel: Silicon;175
12.5.3;8.5.3 Emulsification and Sols;176
12.5.4;8.5.4 Inorganic Capsules;177
12.5.4.1;8.5.4.1 Natural Materials;177
12.5.4.2;8.5.4.2 Synthetic Materials;178
12.5.4.3;8.5.4.3 Sheet Materials;182
12.5.5;8.5.5 Exfoliation and Reassembly into Capsules—Pickering Particles;183
12.5.6;8.5.6 Polymer Capsules;184
12.5.7;8.5.7 Hollow Tubes;186
12.5.8;8.5.8 Self Assembly;186
12.5.9;8.5.9 Dendrimers;187
12.5.10;8.5.10 Conductive Polymers;188
12.6;8.6 Summarizing Discussion on Triggering Mechanisms;189
12.6.1;8.6.1 Autonomic Triggering;189
12.6.2;8.6.2 External Triggering and Transduction;190
12.7;8.7 Practical Considerations;191
12.8;8.8 Conclusions;193
12.9;References;193
13;Part IIICharacterisation Techniques—MeasuringSelf Healing or Repair;204
14;9 Electrochemical Techniques for the Study of Self Healing Coatings;205
14.1;9.1 Electrochemistry in the Context of Corrosion;205
14.2;9.2 Electrochemical Evaluation of Self-healing/Self-repair Coatings;206
14.3;9.3 Conventional Electrochemical Techniques;209
14.3.1;9.3.1 Open Circuit Potential;209
14.3.2;9.3.2 Potentiodynamic Measurements;209
14.3.3;9.3.3 Electrochemical Impedance Spectroscopy (EIS);212
14.3.4;9.3.4 Odd-Random Phase Multisine Electrochemical Impedance Spectroscopy;218
14.3.5;9.3.5 AC/DC/AC Accelerated Electrochemical Protocol;220
14.4;9.4 High-Throughput Screening Techniques;221
14.5;9.5 Local Electrochemical Techniques;223
14.5.1;9.5.1 Electrochemical Microcapillary Cell;224
14.5.2;9.5.2 Scanning Vibrating Electrode Technique (SVET);226
14.5.3;9.5.3 Selective-Ion Electrode Technique (SIET);229
14.5.4;9.5.4 Scanning Electrochemical Microscope (SECM);230
14.5.5;9.5.5 Local Electrochemical Impedance Spectroscopy (LEIS);235
14.6;9.6 Conclusions;236
14.7;References;237
15;10 Physico-Chemical Characterisation of Protective Coatings and Self Healing Processes;243
15.1;10.1 Introduction;243
15.2;10.2 Tomography and Microscopy;245
15.2.1;10.2.1 Tomographical Methods;245
15.2.1.1;10.2.1.1 Non-destructive Tomographical Methods;246
15.2.1.2;10.2.1.2 Transmission Electron Microscopy (TEM);251
15.2.1.3;10.2.1.3 Destructive Tomographical Methods—Microtomy;252
15.2.1.4;10.2.1.4 Tomographical Reconstructions;253
15.2.1.5;10.2.1.5 4-D Tomography;255
15.2.1.6;10.2.1.6 X-ray K-edge Subtraction Tomography;257
15.2.1.7;10.2.1.7 Data Constrained Tomography;258
15.2.2;10.2.2 AFM Based Analysis of Surface Topography, Adhesive Properties, and Mechanics;262
15.3;10.3 Electron and Nuclear Spectroscopy;266
15.3.1;10.3.1 Electron Spectroscopy;266
15.3.1.1;10.3.1.1 X-Ray Photoelectron Spectroscopy (XPS);266
15.3.1.2;10.3.1.2 Spatially Resolved XPS;271
15.3.1.3;10.3.1.3 Auger Electron Spectroscopy (AES);272
15.3.2;10.3.2 Nuclear and Ion Spectroscopy;272
15.4;10.4 Optical Spectroscopy;276
15.4.1;10.4.1 Fourier Transform Infrared Reflection-Absorption Spectroscopy (FT-IRRAS);276
15.4.2;10.4.2 Attenuated Total Reflection Infrared Spectroscopy (ATR-FTIR) and Surface Enhanced ATR-Spectroscopy;280
15.4.3;10.4.3 Surface Enhanced Raman Spectroscopy (SERS);286
15.5;10.5 Concluding Remarks;287
15.6;References;288
16;11 Transport in Protective Coatings;301
16.1;11.1 Introduction;301
16.2;11.2 Water and Oxygen Transport in Polymers and Coatings;302
16.3;11.3 Effect of Coating Constituents on the Transport Properties;305
16.3.1;11.3.1 Effect of Pigmentation;305
16.3.2;11.3.2 Effect of Binder;306
16.3.3;11.3.3 Effect of Additives;307
16.4;11.4 Transport in Rebar Reinforced Concrete;307
16.5;11.5 Measurement and Monitoring of Transport of Corrosion Inhibitors in Coatings;308
16.6;11.6 Summary;311
16.7;References;312
17;Part IVApplications;315
18;12 Aerospace Coatings;316
18.1;12.1 Introduction;316
18.2;12.2 Aerospace Market;317
18.3;12.3 Corrosion Control in the Aerospace Industry;318
18.3.1;12.3.1 Introduction to the Corrosion Protection Scheme;319
18.3.1.1;12.3.1.1 Aluminium Alloys Used in Aerospace;320
18.3.1.2;12.3.1.2 Surface Treatment of Aluminium;320
18.3.1.3;12.3.1.3 Organic Coatings;323
18.3.2;12.3.2 Types of Corrosion and Failures;323
18.3.3;12.3.3 Corrosion Protection and Design;325
18.4;12.4 Introduction into Aerospace Coatings;327
18.4.1;12.4.1 History of Aerospace Coatings;327
18.4.2;12.4.2 Aerospace Coating Systems and Their Requirements;328
18.4.2.1;12.4.2.1 Exterior Systems;328
18.4.2.2;12.4.2.2 Structural Coating Systems;329
18.4.2.3;12.4.2.3 Special Purpose Coating Systems;330
18.4.2.4;12.4.2.4 Coating System Requirements and Specifications;331
18.4.3;12.4.3 Coating Chemistry;333
18.4.3.1;12.4.3.1 Coating Technologies;333
18.4.3.2;12.4.3.2 Aerospace Primer Coating Technologies;335
18.4.3.3;12.4.3.3 Aerospace Topcoat Technologies;337
18.4.4;12.4.4 Active Corrosion Protection and Leaching;339
18.4.5;12.4.5 Application;341
18.4.5.1;12.4.5.1 Equipment;341
18.4.5.2;12.4.5.2 Paint Automation for Exterior and Structural Painting;343
18.4.5.3;12.4.5.3 Application of an Exterior Paint System;343
18.4.6;12.4.6 Trends in the Aerospace Coatings;343
18.5;12.5 Developments Towards a Chromate Free Corrosion Protective Scheme;345
18.5.1;12.5.1 Chromate-Free Pre-treatments;346
18.5.1.1;12.5.1.1 Chemical Conversion Coatings;346
18.5.1.2;12.5.1.2 Anodising;347
18.5.1.3;12.5.1.3 Pre-treatments;348
18.5.2;12.5.2 Developments in Chromate-Free Organic Coatings;349
18.5.2.1;12.5.2.1 Corrosion Inhibiting Strategies;350
18.5.2.2;12.5.2.2 Inhibition Through Leaching;350
18.5.2.3;12.5.2.3 Galvanic Inhibition;351
18.5.2.4;12.5.2.4 Smart and Self-healing Coating Technologies;353
18.5.2.5;12.5.2.5 Alternative Coating Techniques;355
18.5.3;12.5.3 New Approaches Towards Chromate Free Coatings Technology;356
18.5.3.1;12.5.3.1 High-Throughput Experimentation;356
18.5.3.2;12.5.3.2 Imaging Techniques for Corrosion Evaluation;357
18.6;12.6 Remaining Challenges for Chromate Replacement;359
18.7;12.7 Summary and Conclusion;361
18.8;References;362
19;13 Automotive Coatings;374
19.1;13.1 Introduction;374
19.2;13.2 Automotive Paint Application and Materials;375
19.2.1;13.2.1 Pretreatment;375
19.2.2;13.2.2 Electrocoat;377
19.2.3;13.2.3 Primer;378
19.2.4;13.2.4 Basecoat and Clearcoat;379
19.2.5;13.2.5 Compact Paint Processes;381
19.3;13.3 Future Technologies Needs;382
19.4;13.4 Summary;384
19.5;References;385
20;14 Polymer Coatings for Oilfield Pipelines;386
20.1;14.1 Introduction;386
20.2;14.2 A Brief History on the Evolution of Pipe Coatings;387
20.3;14.3 Materials and Processing;393
20.3.1;14.3.1 Fusion Bonded Epoxy Coatings;393
20.3.2;14.3.2 Three Layer Polyolefin Coatings;395
20.3.2.1;14.3.2.1 Chemistry of Primer;395
20.3.2.2;14.3.2.2 Chemistry and Synthesis of Adhesives;396
20.3.2.3;14.3.2.3 Composition of Topcoat;398
20.3.3;14.3.3 Thermally Insulated Polyolefin Coatings for Deepwater Applications;400
20.3.4;14.3.4 Mill Applied Pipe Coating Manufacture;403
20.3.5;14.3.5 Field Joint Coatings;405
20.4;14.4 Performance;407
20.4.1;14.4.1 Industry Standards;407
20.4.2;14.4.2 Common Failure Modes;407
20.4.2.1;14.4.2.1 Blistering and Disbondment;409
20.4.2.2;14.4.2.2 Cracking and Wrinkling;410
20.4.2.3;14.4.2.3 Field Joint Failures;411
20.4.2.4;14.4.2.4 Testing and Performance Evaluation;411
20.4.2.4.1;Adhesion;415
20.4.2.4.2;Cathodic Protection Considerations;415
20.4.2.4.3;Presence of Holidays;418
20.4.2.5;14.4.2.5 Long-Term Exposure to Elevated Temperatures;418
20.5;14.5 New Developments;419
20.5.1;14.5.1 Toughness and Durability;419
20.5.2;14.5.2 Self-healing Capabilities;420
20.5.3;14.5.3 High Temperature Adhesives;421
20.6;14.6 Concluding Remarks;423
20.7;Acknowledgements;424
20.8;References;424




