Hubballi / Verma / Rudrapatna K. | Information Systems Security | Buch | 978-3-032-13713-5 | www2.sack.de

Buch, Englisch, 478 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 779 g

Reihe: Lecture Notes in Computer Science

Hubballi / Verma / Rudrapatna K.

Information Systems Security

21st International Conference, ICISS 2025, Indore, India, December 16-20, 2025, Proceedings
Erscheinungsjahr 2025
ISBN: 978-3-032-13713-5
Verlag: Springer

21st International Conference, ICISS 2025, Indore, India, December 16-20, 2025, Proceedings

Buch, Englisch, 478 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 779 g

Reihe: Lecture Notes in Computer Science

ISBN: 978-3-032-13713-5
Verlag: Springer


This book constitutes the refereed proceedings of the 21st International Conference on Information Systems Security, ICISS 2025, held in Indore, India, during December 16–20, 2025.

The 15 full papers and14 short papers included in this volume were carefully reviewed and selected from 93 submissions. They were organized in topical sections as follows: Access Control; AI for Security; Applied Cryptography; Cyber Security Case Study; Fraud Detection; Intrusion Detection; Malware Detection; Network Security; Privacy; and System Security.

Hubballi / Verma / Rudrapatna K. Information Systems Security jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


.- Access Control .
.-An ML-Driven Adaptive Risk-Based Access Control for the Internet of Drones (IoD).
.-Optimizing Machine Learning Based Access Control Administration Through Data Distillation.
.- AI for Security.
.-The Hidden Risks of LLM-Generated Web Application Code: A Security-Centric Evaluation of Code Generation Capabilities in Large Language Models.
.-Frequency-Aware Deepfake Detection: Transformers vs. CNNs.
.-NEXUS: Neuron Activation Scores Exploits for Unveiling Sensitive Attributes.
.-MazeNet: Protecting DNN Models on Public Cloud Platforms With TEEs.
.-Automation and Risk: Transformers Models Reshape Secrecy Information Management.
.-A Secure Federated Learning using Differential Privacy Mondrian Clustering.
.-Attack Resilient Federated Learning Framework.
.-SANVector: SBERT-APTNet Vector framework for Cyber Threat Attack Attribution using diversified CTI Logs.
.- Applied Cryptography.
.-Cryptanalysis of Two Outsourced Ciphertext-Policy Attribute-Based Encryption Schemes.
.-Dynamic Key-Constant Aggregate Encryption (DKCAE) for Secure Data Sharing in Contemporary Computing.
.-Adversarial Attack on CryptoEyes from INFOCOM 2021.
.-Randomness efficient algorithms for estimating average gate fidelity via k-wise classical and quantum independence.
.-DoPQM: Devices Oriented Post-Quantum Cryptographic Migration Strategies for an Enterprise Network.
.- Cyber Security Case Study.
.-Cyber Warfare During Operation Sindoor: Malware Campaign Analysis and Detection Framework.
.- Fraud Detection.
.-Genetic-LAD: A Hybrid Approach for Financial Fraud Detection.
. -Intrusion Detection.
.-Curriculum Learning with Image Transformation and Explainable AI for Improved Network Intrusion Detection.
.-SAAT: Stealthy Adversarial Attack on IDS in Cyber Physical Systems using Control Logic Induction.
.- Malware Detection.
.-Enhancing Android Malware Detection with Federated Learning: A Privacy-Preserving Approach to Strengthen Cyber Resilience.
.- Network Security.
.- Uncovering Security Weaknesses in srsRAN withCodeQL: A Static Analysis Approach forNext-Gen RAN Systems.
.-Systematic Literature Review of Vulnerabilities and Defenses in VPNs, Tor, and Web Browsers.
.-Security-Centric NWDAF Module for Threat Detection and Mitigation in 5G Core Networks.
.- Privacy.
.-SoK: Evaluation of Methods for Privacy Preserving Edge Video Analytics.
.-Privacy-Preserving Fair Text Summarization Using Federated Learning.
.- System Security.
.-Self Learning Digital Twin For Kubernetes Security.
.-Security and Privacy Assessment of U.S. and Non-U.S. Android E-Commerce Applications.
.-Adaptive MQTT Honeypots for IIoT Security Using Extended Mealy Machines.
.-Modular Analysis of Attack Graphs for Smart Grid Security.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.