Huang / Pan / Chen | Advanced Intelligent Computing Technology and Applications | Buch | 978-981-950026-0 | sack.de

Buch, Englisch, 521 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 814 g

Reihe: Lecture Notes in Computer Science

Huang / Pan / Chen

Advanced Intelligent Computing Technology and Applications

21st International Conference, ICIC 2025, Ningbo, China, July 26-29, 2025, Proceedings, Part XXV
Erscheinungsjahr 2025
ISBN: 978-981-950026-0
Verlag: Springer

21st International Conference, ICIC 2025, Ningbo, China, July 26-29, 2025, Proceedings, Part XXV

Buch, Englisch, 521 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 814 g

Reihe: Lecture Notes in Computer Science

ISBN: 978-981-950026-0
Verlag: Springer


The 20-volume set LNCS 15842-15861, together with the 4-volume set LNAI 15862-15865 and the 4-volume set LNBI 15866-15869, constitutes the refereed proceedings of the 21st International Conference on Intelligent Computing, ICIC 2025, held in Ningbo, China, during July 26-29, 2025.

The 1206 papers presented in these proceedings books were carefully reviewed and selected from 4032 submissions. They deal with emerging and challenging topics in artificial intelligence, machine learning, pattern recognition, bioinformatics, and computational biology. 

Huang / Pan / Chen Advanced Intelligent Computing Technology and Applications jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


.- Biomedical Data Modeling and Mining.
.- IMVSC: An Improved Multiview Subspace Clustering in Multimodal 
Medical Image Application.
.- Pathway Variational Auto Encoder for Survival Prediction.
.- Predicting MiRNA-Disease Associations Using Chebyshev Graph  Convolution and Graph.
.- A Hybrid Architecture for 3D Abdominal Medical Images Based on Mamba.
.- MoRE: Structured Multisignal Encoding for Human Disposition Recognition  from Short Media Clips.
.- FPLRDGraph-DTA: Fusing Prior Features and Long-Range Dependent  Sequence Features for Drug-Target Affinity Prediction.
.- A Dual-Loss-GCN Model for Cuffless Blood Pressure Estimation Using  Photoplethysmography.
.- Graph Attention Network and Dynamic Adjustment Mechanism for Drug  Recommendation. 
.- Distilling Closed-Source LLM's Knowledge for Locally Stable and 
Economic Biomedical Entity Linking.
.- Anatomy-aware Mixture of Experts for Medical Vision-Language Pre-training.
.- SC-AGR: Spatially-Constrained Attention for Context-Aware Graph  Representation in Histopathology Whole Slide Image Analysis.
.- MPD-MFF: A Multimodal Parkinson's Disease Detection Method Based on Multi-Feature Fusion.
.- An Efficient Metadata Processing Method Based on Attention Mechanism.
.- MKDTI: Predicting Drug-target Interactions Via Multiple Kernel Fusion on  Graph Attention Network.
.- BiGAMR-Net: Bidirectional Gated Attention and Multi-scale Residual  Network for Polyp Segmentation.
.- HERMES: Heterogeneous Mixture of Experts Based on Segments for  Auditory Attention Decoding.
.- Advanced Predictive Analytics for Hemorrhagic Complications: A Multi Modal Contrastive Learning and Stacking Ensemble Approach.
.- A Prediction Method for Adult Height of Children Based on ACPSO-SVR.
.- Drug–Target Binding Affinity Prediction Based on an Improved Kolmogorov–Arnold Network and Pretrained Models.
.- Landviewer: Characterization of Tissue Landscapes with Multi-view Graph  Learning from Spatially Resolved Transcriptomics.
.- Inter-Relationship Between Pain and Depressive Symptoms in Chinese Middle-Aged and Older People: A Network Analysis.
.- SR-Net: High-Precision Hippocampal Segmentation and Radiomics-Based  Pipeline for Alzheimer's Disease Diagnosis and Prediction.
.- HNGF-NET: Hybrid Neural-Gabor Fusion Network for Brain Glioma  Segmentation.
.- CorGPT: Coronary Angiography Imaging Analysis Using Large Medical  Vision-Language Models.
.- M3Diff: Semantic Mask-Guided 3D Medical Image Synthesis via Mamba-U Net Hybrid for Data Augmentation.
.- KSIR-MIL: Key Region Selection and Instance Refinement for Multi Instance Learning in Whole Slide Image Classification.
.- A Medical Image Segmentation Network for Low-Resource Scenario.
.- OCTAMLLA-UNet: Leveraging Multi-Scale Linear Local Attention for  Accurate OCTA Retinal Image Segmentation.
.- Mitigating High-Scale Dominance in WSI Classification: A Cross-Attention and Hard Instance Mining Framework.
.- Drug-Target Interaction prediction based on lightweight MoE.
.- PLHGMDA: Pre-trained Language model and Heterogeneous Graph neural  network for MiRNA-Disease Association Prediction.
.- DCA-Enhancer: A Dual-Scale Convolutional Attention Network for  Accurate Enhancer Identification and Strength Prediction.
.- Predicting Antibiotic Resistance Genes Using a Hybrid Dataset with NT  Model and BLAST Validation.
.- Masked Bi-LSTM with Unsupervised Encoding for Genomic Breeding Value  Estimation.
.- Intelligent Computing in Drug Design.
.- Generating a Trustworthy Hypergraph for Traditional Chinese Medicine  Prescription Evaluation and Screening.
.- DrugGAN-MSM: A Generative Adversarial Approach to Molecular Design Integrating Masked Modeling and Multi-Objective Optimization.
.- CroMamba-DTA: Cross-Mamba for Drug-Target Binding Affinity Prediction.
.- CGLDM: A Conditional Geometric Latent Diffusion Model for 3D  Molecular Generation.
.- MetaGT-HGN: A Heterogeneous Graph Neural Network Based on Meta-Learning and a Graph Transformer for Drug Repurposing.
.- Single Cell Spatial Transcriptome.
.- Spatial Transcriptomics Domain Identification Algorithm Based on Multi Scale Contrastive Learning.
.- Low-Rank Multiple Kernel Model based on Local Structures Learning and  Adaptive Similarity Preserving for scRNA-seq Data Clustering.
.- scMGCC: A Self-Supervised Multi-Level Graph Contrastive Learning  Method for scRNA-seq Data Clustering.
.- SMTFusion: Multi-Order Topological Cell Graphs for Single-Cell Multi-Omics Clustering.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.