Huang / Kuo / Shen | Nitride Semiconductor Light-Emitting Diodes (LEDs) | E-Book | sack.de
E-Book

Huang / Kuo / Shen Nitride Semiconductor Light-Emitting Diodes (LEDs)

Materials, Technologies and Applications
1. Auflage 2014
ISBN: 978-0-85709-930-3
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark

Materials, Technologies and Applications

E-Book, Englisch, 650 Seiten

Reihe: Woodhead Publishing Series in Electronic and Optical Materials

ISBN: 978-0-85709-930-3
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark



The development of nitride-based light-emitting diodes (LEDs) has led to advancements in high-brightness LED technology for solid-state lighting, handheld electronics, and advanced bioengineering applications. Nitride Semiconductor Light-Emitting Diodes (LEDs) reviews the fabrication, performance, and applications of this technology that encompass the state-of-the-art material and device development, and practical nitride-based LED design considerations. Part one reviews the fabrication of nitride semiconductor LEDs. Chapters cover molecular beam epitaxy (MBE) growth of nitride semiconductors, modern metalorganic chemical vapor deposition (MOCVD) techniques and the growth of nitride-based materials, and gallium nitride (GaN)-on-sapphire and GaN-on-silicon technologies for LEDs. Nanostructured, non-polar and semi-polar nitride-based LEDs, as well as phosphor-coated nitride LEDs, are also discussed. Part two covers the performance of nitride LEDs, including photonic crystal LEDs, surface plasmon enhanced LEDs, color tuneable LEDs, and LEDs based on quantum wells and quantum dots. Further chapters discuss the development of LED encapsulation technology and the fundamental efficiency droop issues in gallium indium nitride (GaInN) LEDs. Finally, part three highlights applications of nitride LEDs, including liquid crystal display (LCD) backlighting, infrared emitters, and automotive lighting. Nitride Semiconductor Light-Emitting Diodes (LEDs) is a technical resource for academics, physicists, materials scientists, electrical engineers, and those working in the lighting, consumer electronics, automotive, aviation, and communications sectors. - Reviews fabrication, performance, and applications of this technology that encompass the state-of-the-art material and device development, and practical nitride-based LED design considerations - Covers the performance of nitride LEDs, including photonic crystal LEDs, surface plasmon enhanced LEDs, color tuneable LEDs, and LEDs based on quantum wells and quantum dots - Highlights applications of nitride LEDs, including liquid crystal display (LCD) backlighting, infra-red emitters, and automotive lighting

Prof. JianJang Huang received the B.S. degree in Electrical Engineering (EE) and the M.S. degree in Graduate Institute of Photonics and Optoelectronics (GIPO) from National Taiwan University (NTU), Taipei, Taiwan, in 1994 and 1996, respectively, and the Ph.D. degree in Electrical Engineering from the University of Illinois, Urbana-Champaign, in 2002. He had worked with WJ (Watkins Johnson) Communications in California, as a Staff Scientist from 2002 to 2004. He then came back to Taiwan in 2004 and is currently the professor at NTU EE and GIPO.Prof. Huang has been involved in the development of optoelectronic and electronic devices. He has developed a spin-coating method for nanosphere lithography (NSL) to significantly improve the performance of light emitting diodes (LEDs), solar cells and nanorod devices. His NSL approach has been licensed to several LED companies in Taiwan. He has also fabricated and characterized IGZO TFTs and the corresponding circuits on glass and flexible substrates. In recent years, his group has spent great efforts in realizing cancer cell probes using ZnO nanorods, and high-sensitivity protein sensors based on IGZO TFTs.Prof. Huang is a member of the Phi Tau Phi Scholastic Honor Society. He received 'Wu Da-Yu award in 2008, the most prestigious one for young researchers in Taiwan sponsored by National Science Council. And in the same year, he received the award for the most excellent young electrical engineer from the Chinese Institute of Electrical Engineering. He has served in several IPO committees in Taiwan Stock Exchange. He is currently the board director of GCS holdings in Torrance, CA, USA and the conference chair of SPIE, International Conference on Solid-State Lighting."

Huang / Kuo / Shen Nitride Semiconductor Light-Emitting Diodes (LEDs) jetzt bestellen!

Weitere Infos & Material


1;Cover
;1
2;Nitride semiconductor light-emitting diodes(LEDs): Materials, technologies and applications
;4
3;Copyright;5
4;Contents;6
5;Contributor contact details;14
6;Woodhead Publishing Series in Electronic and Optical Materials;18
7;Dedication;23
8;Preface;24
9;Part I:
Materials and fabrication;28
9.1;1:
Molecular beam epitaxy (MBE) growth of nitride semiconductors;30
9.1.1;1.1 Introduction;30
9.1.2;1.2 Molecular beam epitaxial (MBE) growth techniques;31
9.1.3;1.3 Plasmaassisted MBE (PAMBE) growth of nitride epilayers and quantum structures;32
9.1.4;1.4 Nitride nanocolumn (NC) materials;39
9.1.5;1.5 Nitride nanostructures based on NCs;44
9.1.6;1.6 Conclusion;48
9.1.7;1.7 References;48
9.2;2:
Modern metalorganic chemical vapor deposition (MOCVD) reactors and growing nitridebased materials;54
9.2.1;2.1 Introduction;54
9.2.2;2.2 MOCVD systems;55
9.2.3;2.3 Planetary reactors;62
9.2.4;2.4 Closecoupled showerhead (CCS) reactors;72
9.2.5;2.5 In situ monitoring systems and growing nitridebased materials
;81
9.2.6;2.6 Acknowledgements;92
9.2.7;2.7 References;92
9.3;3:
Gallium nitride (GaN) on sapphire substrates for visible LEDs;93
9.3.1;3.1 Introduction;93
9.3.2;3.2 Sapphire substrates;96
9.3.3;3.3 Strained heteroepitaxial growth on sapphire substrates;104
9.3.4;3.4 Epitaxial overgrowth of GaN on sapphire substrates;108
9.3.5;3.5 GaN growth on nonpolar and semipolar surfaces;113
9.3.6;3.6 Future trends;115
9.3.7;3.7 References;116
9.4;4:
Gallium nitride (GaN) on silicon substrates for LEDs;126
9.4.1;4.1 Introduction;126
9.4.2;4.2 An overview of gallium nitride (GaN) on silicon substrates;127
9.4.3;4.3 Silicon overview;128
9.4.4;4.4 Challenges for the growth of GaN on silicon substrates;131
9.4.5;4.5 Bufferlayer strategies;132
9.4.6;4.6 Device technologies;140
9.4.7;4.7 Conclusion;166
9.4.8;4.8 References;166
9.5;5:
Phosphors for white LEDs;171
9.5.1;5.1 Introduction;171
9.5.2;5.2 Optical transitions of Ce and Eu
;173
9.5.3;5.3 Chemical composition of representative nitride and oxynitride phosphors;176
9.5.4;5.4 Compounds activated by Eu;177
9.5.5;5.5 Compounds activated by Ce;192
9.5.6;5.6 Features of the crystal structure of nitride and oxynitride phosphors;195
9.5.7;5.7 Features of optical transitions of nitride and oxynitride phosphors;198
9.5.8;5.8 Conclusion and future trends;202
9.5.9;5.9 Acknowledgements;203
9.5.10;5.10 References;203
9.6;6:
Fabrication of nitride LEDs;208
9.6.1;6.1 Introduction;208
9.6.2;6.2 GaN-based fl ipchip LEDs and fl ipchip technology;210
9.6.3;6.3 GaN FCLEDs with textured micropillar arrays;212
9.6.4;6.4 GaN FCLEDs with a geometric sapphire shaping structure;218
9.6.5;6.5 GaN thinfi lm photonic crystal (PC) LEDs;225
9.6.6;6.6 PC nanostructures and PC LEDs;227
9.6.7;6.7 Light emission characteristics of GaN PC TFLEDs;232
9.6.8;6.8 Conclusion;238
9.6.9;6.9 References;239
9.7;7: Nanostructured LEDs
;243
9.7.1;7.1 Introduction;243
9.7.2;7.2 General mechanisms for growth of gallium nitride (GaN) related materials;245
9.7.3;7.3 General characterization method;250
9.7.4;7.4 Topdown technique for nanostructured LEDs;252
9.7.5;7.5 Bottomup technique for GaN nanopillar substrates prepared by molecular beam epitaxy;267
9.7.6;7.6 Conclusion;272
9.7.7;7.7 References;272
9.8;8:
Nonpolar and semipolar LEDs;277
9.8.1;8.1 Motivation: limitations of conventional cplane LEDs;277
9.8.2;8.2 Introduction to selected nonpolar and semipolar planes;282
9.8.3;8.3 Challenges in nonpolar and semipolar epitaxial growth;290
9.8.4;8.4 Light extraction for nonpolar and semipolar LEDs;294
9.8.5;8.5 References;297
10;Part II:
Performance of nitride LEDs;304
10.1;9: Efficiency droop in gallium indium nitride (GaInN)/gallium nitride (GaN) LEDs
;306
10.1.1;9.1 Introduction;306
10.1.2;9.2 Recombination models in LEDs;308
10.1.3;9.3 Thermal rollover in gallium indium nitride (GaInN) LEDs;309
10.1.4;9.4 Auger recombination;311
10.1.5;9.5 Highlevel injection and the asymmetry of carrier concentration and mobility;313
10.1.6;9.6 Noncapture of carriers;317
10.1.7;9.7 Polarization fi elds;318
10.1.8;9.8 Carrier delocalization;318
10.1.9;9.9 Discussion and comparison of droop mechanisms;320
10.1.10;9.10 Methods for overcoming droop;321
10.1.11;9.11 References;325
10.2;10:
Photonic crystal nitride LEDs;328
10.2.1;10.1 Introduction;328
10.2.2;10.2 Photonic crystal (PC) technology;337
10.2.3;10.3 Improving LED extraction effi ciency through PC surface patterning;345
10.2.4;10.4 PC-enhanced light extraction in P-side up LEDs;349
10.2.5;10.5 Modelling PC-LEDs;353
10.2.6;10.6 P-side up PC-LED performance;382
10.2.7;10.7 PC-enhanced light extraction in N-side up LEDs;389
10.2.8;10.8 Summary;397
10.2.9;10.9 Conclusions;399
10.2.10;10.10 References;400
10.3;11:
Surface plasmon enhanced LEDs;402
10.3.1;11.1 Introduction;402
10.3.2;11.2 Mechanism for plasmoncoupled emission;403
10.3.3;11.3 Fabrication of plasmoncoupled nanostructures;405
10.3.4;11.4 Performance and outlook;410
10.3.5;11.5 Acknowledgements;412
10.3.6;11.6 References;412
10.4;12:
Nitride LEDs based on quantum wells and quantum dots;415
10.4.1;12.1 Lightemitting diodes (LEDS);415
10.4.2;12.2 Polarization effects in III-nitride LEDs;426
10.4.3;12.3 Current status of III-nitride LEDs;437
10.4.4;12.4 Modern LED designs and enhancements;446
10.4.5;12.5 References;447
10.5;13:
Color tunable LEDs;456
10.5.1;13.1 Introduction;456
10.5.2;13.2 Initial idea for stacked LEDs;457
10.5.3;13.3 Secondgeneration LED stack with inclined sidewalls;459
10.5.4;13.4 Thirdgeneration tightly integrated chipstacking approach;464
10.5.5;13.5 Groupaddressable pixelated micro-LED arrays;470
10.5.6;13.6 Conclusions;473
10.5.7;13.7 References;474
10.6;14:
Reliability of nitride LEDs;475
10.6.1;14.1 Introduction;475
10.6.2;14.2 Reliability testing of nitride LEDs;475
10.6.3;14.3 Evaluation of LED degradation;478
10.6.4;14.4 Degradation mechanisms;481
10.6.5;14.5 Conclusion;486
10.6.6;14.6 References;487
10.7;15:
Chip packaging: encapsulation of nitride LEDs;488
10.7.1;15.1 Functions of LED chip packaging;488
10.7.2;15.2 Basic structure of LED packaging modules;493
10.7.3;15.3 Processes used in LED packaging;496
10.7.4;15.4 Optical effects of gold wire bonding;500
10.7.5;15.5 Optical effects of phosphor coating;503
10.7.6;15.6 Optical effects of freeform lenses;510
10.7.7;15.7 Thermal design and processing of LED packaging;515
10.7.8;15.8 Conclusion;523
10.7.9;15.9 References;523
11;Part III:
Applications of nitride LEDs;530
11.1;16:
White LEDs for lighting applications: the role of standards;532
11.1.1;16.1 General lighting applications;532
11.1.2;16.2 LED terminology;534
11.1.3;16.3 Copying traditional lamps?;537
11.1.4;16.4 Freedom of choice;538
11.1.5;16.5 Current and future trends;541
11.1.6;16.6 References;542
11.2;17: Ultraviolet LEDs
;544
11.2.1;17.1 Research background of deep ultraviolet (DUV) LEDs;544
11.2.2;17.2 Growth of low threading dislocation density (TDD) AlN layers on sapphire;549
11.2.3;17.3 Marked increases in internal quantum effi ciency (IQE);554
11.2.4;17.4 Aluminum gallium nitride (AlGaN)-based DUV-LEDs fabricated on highquality aluminum nitride (AlN);560
11.2.5;17.5 Increase in electron injection effi ciency (EIE) and light extraction effi ciency (LEE);568
11.2.6;17.6 Conclusions and future trends;575
11.2.7;17.7 References;577
11.3;18:
Infrared emitters made from III-nitride semiconductors;580
11.3.1;18.1 Introduction;580
11.3.2;18.2 High indium (In) content alloys for infrared emitters;581
11.3.3;18.3 Rareearth (RE) doped gallium nitride (GaN) emitters;583
11.3.4;18.4 III-nitride materials for intersubband (ISB) optoelectronics;585
11.3.5;18.5 ISB devices;596
11.3.6;18.6 Conclusions;603
11.3.7;18.7 Acknowledgements;604
11.3.8;18.8 References;604
11.4;19:
LEDs for liquid crystal display (LCD) backlighting;613
11.4.1;19.1 Introduction;613
11.4.2;19.2 Types of LED LCD backlighting units (BLUs);614
11.4.3;19.3 Technical considerations for optical fi lms and plates;618
11.4.4;19.4 Requirements for LCD BLUs;619
11.4.5;19.5 Advantages and history of LED BLUs;621
11.4.6;19.6 Market trends and technological developments;624
11.4.7;19.7 Optical design;630
11.4.8;19.8 References;640
11.5;20:
LEDs in automotive lighting;642
11.5.1;20.1 Introduction;642
11.5.2;20.2 Forward lighting;642
11.5.3;20.3 Signal lighting;646
11.5.4;20.4 Human factor issues with LEDs;646
11.5.5;20.5 Energy and environmental issues;650
11.5.6;20.6 Future trends;650
11.5.7;20.7 Sources of further information and advice;651
11.5.8;20.8 Acknowledgments;651
11.5.9;20.9 References;651
12;Index;654


Woodhead Publishing Series in Electronic and Optical Materials
1 Circuit analysis
J. E. Whitehouse 2 Signal processing in electronic communications: For engineers and mathematicians
M. J. Chapman, D. P. Goodall and N. C. Steele 3 Pattern recognition and image processing
D. Luo 4 Digital filters and signal processing in electronic engineering: Theory, applications, architecture, code
S. M. Bozic and R. J. Chance 5 Cable engineering for local area networks
B. J. Elliott 6 Designing a structured cabling system to ISO 11801: Cross-referenced to European CENELEC and American Standards
Second edition
B. J. Elliott 7 Microscopy techniques for materials science
A. Clarke and C. Eberhardt 8 Materials for energy conversion devices
Edited by C. C. Sorrell, J. Nowotny and S. Sugihara 9 Digital image processing: Mathematical and computational methods Second edition
J. M. Blackledge 10 Nanolithography and patterning techniques in microelectronics
Edited by D. Bucknall 11 Digital signal processing: Mathematical and computational methods, software development and applications
Second edition
J. M. Blackledge 12 Handbook of advanced dielectric, piezoelectric and ferroelectric materials: Synthesis, properties and applications
Edited by Z.-G. Ye 13 Materials for fuel cells
Edited by M. Gasik 14 Solid-state hydrogen storage: Materials and chemistry
Edited by G. Walker 15 Laser cooling of solids
S. V. Petrushkin and V. V. Samartsev 16 Polymer electrolytes: Fundamentals and applications
Edited by C. A. C. Sequeira and D. A. F. Santos 17 Advanced piezoelectric materials: Science and technology
Edited by K. Uchino 18 Optical switches: Materials and design
Edited by S. J. Chua and B. Li 19 Advanced adhesives in electronics: Materials, properties and applications
Edited by M. O. Alam and C. Bailey 20 Thin film growth: Physics, materials science and applications
Edited by Z. Cao 21 Electromigration in thin films and electronic devices: Materials and reliability
Edited by C.-U. Kim 22 In situ characterization of thin film growth
Edited by G. Koster and G. Rijnders 23 Silicon-germanium (SiGe) nanostructures: Production, properties and applications in electronics
Edited by Y. Shiraki and N. Usami 24 High-temperature superconductors
Edited by X. G. Qiu 25 Introduction to the physics of nanoelectronics
S. G. Tan and M. B. A. Jalil 26 Printed films: Materials science and applications in sensors, electronics and photonics
Edited by M. Prudenziati and J. Hormadaly 27 Laser growth and processing of photonic devices
Edited by N. A. Vainos 28 Quantum optics with semiconductor nanostructures
Edited by F. Jahnke 29 Ultrasonic transducers: Materials and design for sensors, actuators and medical applications
Edited by K. Nakamura 30 Waste electrical and electronic equipment (WEEE) handbook
Edited by V. Goodship and A. Stevels 31 Applications of ATILA FEM software to smart materials: Case studies in designing devices
Edited by K. Uchino and J.-C. Debus 32 MEMS for automotive and aerospace applications
Edited by M. Kraft and N. M. White 33 Semiconductor lasers: Fundamentals and applications
Edited by A. Baranov and E. Tournie 34 Handbook of terahertz technology for imaging, sensing and communications
Edited by D. Saeedkia 35 Handbook of solid-state lasers: Materials, systems and applications
Edited by B. Denker and E. Shklovsky 36 Organic light-emitting diodes (OLEDs): Materials, devices and applications
Edited by A. Buckley 37 Lasers for medical applications: Diagnostics, therapy and surgery
Edited by H. Jelínková 38 Semiconductor gas sensors
Edited by R. Jaaniso and O. K. Tan 39 Handbook of organic materials for optical and (opto)electronic devices: Properties and applications
Edited by O. Ostroverkhova 40 Metallic films for electronic, optical and magnetic applications: Structure, processing and properties
Edited by K. Barmak and K. Coffey 41 Handbook of laser welding technologies
Edited by S. Katayama 42 Nanolithography: The art of fabricating nanoelectronic and nanophotonic devices and systems
Edited by M. Feldman 43 Laser spectroscopy for sensing: Fundamentals, techniques and applications
Edited by M. Baudelet 44 Chalcogenide glasses: Preparation, properties and applications
Edited by J.-L. Adam and X. Zhang 45 Handbook of MEMS for wireless and mobile applications
Edited by D. Uttamchandani 46 Subsea optics and imaging
Edited by J. Watson and O. Zielinski 47 Carbon nanotubes and graphene for photonic applications
Edited by S. Yamashita, Y. Saito and J. H. Choi 48 Optical biomimetics: Materials and applications
Edited by M. Large 49 Optical thin films and coatings
Edited by A. Piegari and F. Flory 50 Computer design of diffractive optics
Edited by V. A. Soifer 51 Smart sensors and MEMS: Intelligent devices and microsystems for industrial applications
Edited by S. Nihtianov and A. Luque 52 Fundamentals of femtosecond...



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.