Buch, Englisch, Band 17, 260 Seiten, Previously published in hardcover, Format (B × H): 210 mm x 297 mm, Gewicht: 724 g
Supervised, Semi-supervised, and Unsupervised Learning
Buch, Englisch, Band 17, 260 Seiten, Previously published in hardcover, Format (B × H): 210 mm x 297 mm, Gewicht: 724 g
Reihe: Studies in Computational Intelligence
ISBN: 978-3-642-06856-0
Verlag: Springer
"Kernel Based Algorithms for Mining Huge Data Sets" is the first book treating the fields of supervised, semi-supervised and unsupervised machine learning collectively. The book presents both the theory and the algorithms for mining huge data sets by using support vector machines (SVMs) in an iterative way. It demonstrates how kernel based SVMs can be used for dimensionality reduction (feature elimination) and shows the similarities and differences between the two most popular unsupervised techniques, the principal component analysis (PCA) and the independent component analysis (ICA). The book presents various examples, software, algorithmic solutions enabling the reader to develop their own codes for solving the problems. The book is accompanied by a website for downloading both data and software for huge data sets modeling in a supervised and semisupervised manner, as well as MATLAB based PCA and ICA routines for unsupervised learning. The book focuses on a broad range of machine learning algorithms and it is particularly aimed at students, scientists, and practicing researchers in bioinformatics (gene microarrays), text-categorization, numerals recognition, as well as in the images and audio signals de-mixing (blind source separation) areas.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Data Mining
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Wissensbasierte Systeme, Expertensysteme
- Technische Wissenschaften Technik Allgemein Computeranwendungen in der Technik
- Mathematik | Informatik EDV | Informatik Angewandte Informatik Computeranwendungen in Wissenschaft & Technologie
- Technische Wissenschaften Elektronik | Nachrichtentechnik Elektronik Robotik
- Technische Wissenschaften Technik Allgemein Mathematik für Ingenieure
- Mathematik | Informatik EDV | Informatik Professionelle Anwendung Computer-Aided Design (CAD)
Weitere Infos & Material
Support Vector Machines in Classification and Regression — An Introduction.- Iterative Single Data Algorithm for Kernel Machines from Huge Data Sets: Theory and Performance.- Feature Reduction with Support Vector Machines and Application in DNA Microarray Analysis.- Semi-supervised Learning and Applications.- Unsupervised Learning by Principal and Independent Component Analysis.