Buch, Englisch, 304 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 476 g
Reihe: Blockchain Technologies
Buch, Englisch, 304 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 476 g
Reihe: Blockchain Technologies
ISBN: 978-981-336-139-3
Verlag: Springer Nature Singapore
This book introduces readers to recent advancements in financial technologies. The contents cover some of the state-of-the-art fields in financial technology, practice, and research associated with artificial intelligence, big data, and blockchain—all of which are transforming the nature of how products and services are designed and delivered, making less adaptable institutions fast become obsolete. The book provides the fundamental framework, research insights, and empirical evidence in the efficacy of these new technologies, employing practical and academic approaches to help professionals and academics reach innovative solutions and grow competitive strengths.
Zielgruppe
Professional/practitioner
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Informatik Mensch-Maschine-Interaktion Ambient Intelligence, RFID, Internet der Dinge
- Technische Wissenschaften Energietechnik | Elektrotechnik Elektrotechnik
- Technische Wissenschaften Elektronik | Nachrichtentechnik Nachrichten- und Kommunikationstechnik
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Big Data
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz
- Mathematik | Informatik EDV | Informatik Angewandte Informatik
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
Weitere Infos & Material
1. Blockchain, Cryptocurrency, and Artificial Intelligence in Finance.- 2. Alternative Data, Big Data, and Applications to Finance.- 3. Application of Big Data with Financial Technology in Financial Services.- 4. Using Machine Learning to Predict the Defaults of Credit Card Clients.- 5. Arti?cial Intelligence and Advanced Time Series Classi?cation: Residual Attention Net for Cross-Domain Modeling.- 6. Generating Synthetic Sequential Data for Enhanced Model Training Through Attention: A Generative Adversarial Net Framework.