Hu / Divina / Lourenço | Genetic Programming | Buch | 978-3-030-44093-0 | sack.de

Buch, Englisch, 295 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 470 g

Reihe: Theoretical Computer Science and General Issues

Hu / Divina / Lourenço

Genetic Programming

23rd European Conference, EuroGP 2020, Held as Part of EvoStar 2020, Seville, Spain, April 15-17, 2020, Proceedings
1. Auflage 2020
ISBN: 978-3-030-44093-0
Verlag: Springer International Publishing

23rd European Conference, EuroGP 2020, Held as Part of EvoStar 2020, Seville, Spain, April 15-17, 2020, Proceedings

Buch, Englisch, 295 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 470 g

Reihe: Theoretical Computer Science and General Issues

ISBN: 978-3-030-44093-0
Verlag: Springer International Publishing


This book constitutes the refereed proceedings of the 23rd European Conference on Genetic Programming, EuroGP 2020, held as part of Evo*2020, in Seville, Spain, in April 2020, co-located with the Evo*2020 events EvoCOP, EvoMUSART and EvoApplications.
The 12 full papers and 6 short papers presented in this book were carefully reviewed and selected from 36 submissions. The papers cover a wide spectrum of topics, including designing GP algorithms for ensemble learning, comparing GP with popular machine learning algorithms, customising GP algorithms for more explainable AI applications to real-world problems.

Hu / Divina / Lourenço Genetic Programming jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Hessian Complexity Measure for Genetic Programming-based Imputation Predictor Selection in Symbolic Regression with Incomplete Data.- Seeding Grammars in Grammatical Evolution to Improve Search Based Software Testing.- Incremental Evolution and Development of Deep Artificial Neural Networks.- Investigating the Use of Geometric Semantic Operators in Vectorial Genetic Programming.- Comparing Genetic Programming Approaches for Non-Functional Genetic Improvement.- Automatically Evolving Lookup Tables for Function Approximation.- Optimising Optimisers with Push GP.- An Evolutionary View on Reversible Shift-invariant Transformations.- Benchmarking Manifold Learning Methods on a Large Collection of Datasets.- Ensemble Genetic Programming.- SGP-DT: Semantic Genetic Programming Based on Dynamic Targets.- Effect of Parent Selection Methods on Modularity.- Time Control or Size Control? Reducing Complexity and Improving Accuracy of Genetic Programming Models.- Challenges of Program Synthesis withGrammatical Evolution.- Detection of Frailty Using Genetic Programming: The Case of Older People in Piedmont, Italy.- Is k Nearest Neighbours Regression Better than GP.- Guided Subtree Selection for Genetic Operators in Genetic Programming for Dynamic Flexible Job Shop Scheduling.- Classification of Autism Genes using Network Science and Linear Genetic Programming.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.