Hoyt / Penkov | Classical Lie Algebras at Infinity | Buch | 978-3-030-89662-1 | sack.de

Buch, Englisch, 239 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 394 g

Reihe: Springer Monographs in Mathematics

Hoyt / Penkov

Classical Lie Algebras at Infinity

Buch, Englisch, 239 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 394 g

Reihe: Springer Monographs in Mathematics

ISBN: 978-3-030-89662-1
Verlag: Springer International Publishing


Originating from graduate topics courses given by the first author, this book functions as a unique text-monograph hybrid that bridges a traditional graduate course to research level representation theory.  The exposition includes an introduction to the subject, some highlights of the theory and recent results in the field, and is therefore appropriate for advanced graduate students entering the field as well as research mathematicians wishing to expand their knowledge. The mathematical background required varies from chapter to chapter, but a standard course on Lie algebras and their representations, along with some knowledge of homological algebra, is necessary. Basic algebraic geometry and sheaf cohomology are needed for Chapter 10. Exercises of various levels of difficulty are interlaced throughout the text to add depth to topical comprehension.

The unifying theme of this book is the structure and representation theory of infinite-dimensional locally reductive Lie algebras and superalgebras. Chapters 1-6 are foundational; each of the last 4 chapters presents a self-contained study of a specialized topic within the larger field. Lie superalgebras and flag supermanifolds are discussed in Chapters 3, 7, and 10, and may be skipped by the reader.

Hoyt / Penkov Classical Lie Algebras at Infinity jetzt bestellen!

Zielgruppe


Graduate


Autoren/Hrsg.


Weitere Infos & Material


Preface.- Notation and Terminology. - I. Structure of Locally Reductive Lie Algebras.- 1. Finite-dimensional Lie algebras.- 2. Finite-dimensional Lie superalgebras.- 3. Root-reductive Lie algebras.- 4. Two generalizations.- 5. Splitting Borel subalgebras of sl(infinity), frak o (infinity), sp(infinity) and generalized flags.- 6. General Cartan, Borel and parabolic subalgebras of gl(infinity) and sl(infinity).- II. Modules over Locally Reductive Lie Algebras.- 7. Tensor modules of sl(infinity), frak o(infinity), sp (infinity).- 8. Weight modules.- 9.Generalized Harish-Chandra modules.- III. Geometric aspects. - 10.The Bott-Borel-Weil Theorem.- References.- Index of Notation.- Index.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.