Howie | Real Analysis | Buch | 978-1-85233-314-0 | sack.de

Buch, Englisch, 276 Seiten, Format (B × H): 170 mm x 244 mm, Gewicht: 1110 g

Reihe: Springer Undergraduate Mathematics Series

Howie

Real Analysis


1. Auflage 2001. Corr. 3rd printing 2006
ISBN: 978-1-85233-314-0
Verlag: Springer

Buch, Englisch, 276 Seiten, Format (B × H): 170 mm x 244 mm, Gewicht: 1110 g

Reihe: Springer Undergraduate Mathematics Series

ISBN: 978-1-85233-314-0
Verlag: Springer


Real Analysis is a comprehensive introduction to this core subject and is ideal for self-study or as a course textbook for first and second-year undergraduates. Combining an informal style with precision mathematics, the book covers all the key topics with fully worked examples and exercises with solutions. All the concepts and techniques are deployed in examples in the final chapter to provide the student with a thorough understanding of this challenging subject. This book offers a fresh approach to a core subject and manages to provide a gentle and clear introduction without sacrificing rigour or accuracy.

Howie Real Analysis jetzt bestellen!

Zielgruppe


Lower undergraduate


Autoren/Hrsg.


Weitere Infos & Material


1. Introductory Ideas.- 1.1 Foreword for the Student: Is Analysis Necessary?.- 1.2 The Concept of Number.- 1.3 The Language of Set Theory.- 1.4 Real Numbers.- 1.5 Induction.- 1.6 Inequalities.- 2. Sequences and Series.- 2.1 Sequences.- 2.2 Sums, Products and Quotients.- 2.3 Monotonie Sequences.- 2.4 Cauchy Sequences.- 2.5 Series.- 2.6 The Comparison Test.- 2.7 Series of Positive and Negative Terms.- 3. Functions and Continuity.- 3.1 Functions, Graphs.- 3.2 Sums, Products, Compositions; Polynomial and Rational Functions.- 3.3 Circular Functions.- 3.4 Limits.- 3.5 Continuity.- 3.6 Uniform Continuity.- 3.7 Inverse Functions.- 4. Differentiation.- 4.1 The Derivative.- 4.2 The Mean Value Theorems.- 4.3 Inverse Functions.- 4.4 Higher Derivatives.- 4.5 Taylor’s Theorem.- 5. Integration.- 5.1 The Riemann Integral.- 5.2 Classes of Integrable Functions.- 5.3 Properties of Integrals.- 5.4 The Fundamental Theorem.- 5.5 Techniques of Integration.- 5.6 Improper Integrals of the First Kind.- 5.7 Improper Integrals of the Second Kind.- 6. The Logarithmic and Exponential Functions.- 6.1 A Function Defined by an Integral.- 6.2 The Inverse Function.- 6.3 Further Properties of the Exponential and Logarithmic Functions.- Sequences and Series of Functions.- 7.1 Uniform Convergence.- 7.2 Uniform Convergence of Series.- 7.3 Power Series.- 8. The Circular Functions.- 8.1 Definitions and Elementary Properties.- 8.2 Length.- 9. Miscellaneous Examples.- 9.1 Wallis’s Formula.- 9.2 Stirling’s Formula.- 9.3 A Continuous, Nowhere Differentiable Function.- Solutions to Exercises.- The Greek Alphabet.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.