Horwich | Protein Folding in the Cell | E-Book | sack.de
E-Book

E-Book, Englisch, Band Volume 59, 550 Seiten, Web PDF

Reihe: Advances in Protein Chemistry

Horwich Protein Folding in the Cell


1. Auflage 2002
ISBN: 978-0-08-052240-1
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, Band Volume 59, 550 Seiten, Web PDF

Reihe: Advances in Protein Chemistry

ISBN: 978-0-08-052240-1
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark



This volume of Advances in Protein Chemistry provides a broad, yet deep look at the cellular components that assist protein folding in the cell. This area of research is relatively new--10 years ago these components were barely recognized, so this book is a particularly timely compilation of current information. Topics covered include a review of the structure and mechanism of the major chaperone components, prion formation in yeast, and the use of microarrays in studying stress response. Outlines preceding each chapter allow the reader to quickly access the subjects of greatest interest. The information presented in this book should appeal to biochemists, cell biologists, and structural biologists.

Horwich Protein Folding in the Cell jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Cover;1
2;Title Page;4
3;Copyright Page;5
4;CONTENTS;6
5;PREFACE;12
6;Chapter 1. Hsp70 Chaperone Machines;16
6.1;I. Introduction;16
6.2;II. Chaperone Activities of Hsp70;17
6.3;III. Mechanism of Action;23
6.4;IV. The Targeting Activity of Co-chaperones;43
6.5;V. Outlook;51
6.6;References;52
7;Chapter 2 .Allostery and Protein Substrate Conformational Change during GroEL/GroES-Mediated Protein Folding;60
7.1;I. Introduction;60
7.2;II. Structure of GroEL and Its Functional Complexes;61
7.3;III. Polypeptide Folding;71
7.4;IV. Conclusions;85
7.5;References;86
8;Chapter 3. Type II Chaperonins, Prefoldin, and the Tubulin-Specific Chaperones;88
8.1;I. Introduction;88
8.2;II. Discovery of Type II Chaperonins and Early Functional Studies;89
8.3;III. Subunits and Assembly;90
8.4;IV. Target Range and Specificity of CCT;94
8.5;V. Cycling of Target Proteins by CCT;96
8.6;VI. Genetics;98
8.7;VII. Structure of Type II Chaperonins;99
8.8;VIII. Prefoldin;103
8.9;IX. Tubulin-Specific Chaperones;107
8.10;X. Conclusion;113
8.11;References;113
9;Chapter 4. Structure and Function of the Small Heat Shock Protein/a-Crystallin Family of Molecular Chaperones;120
9.1;I. Introduction;120
9.2;II. Diversity of the sHsps and Their Expression Patterns;122
9.3;III. X-Ray Structural Analysis;131
9.4;IV. Dynamic Nature of the sHsp Oligomer;139
9.5;V. sHsp Chaperone Activity;142
9.6;VI. Potential sHsp Substrates;153
9.7;VII. Conclusions;161
9.8;References;162
10;Chapter 5. Structure, Function, and Mechanism of the Hsp90 Molecular Chaperone;172
10.1;I. Introduction;172
10.2;II. Domain Structure and Function;173
10.3;III. ATP Binding and Hydrolysis by Hsp90 Are Essential in Vivo;179
10.4;IV. Conformational Changes in Hsp90 Accompanying the ATPase Cycle;181
10.5;V. Hsp90 ATPase Inhibitors„A New Class of Antitumor Drugs;185
10.6;VI. Interaction with Co-chaperones;188
10.7;VII. Regulation of ATP Binding and Hydrolysis in the Client-Protein Activation Pathway;190
10.8;VIII. Interactions with Alterations of Client Proteins by Hsp90;191
10.9;IX. Conclusion;195
10.10;References;196
11;Chapter 6. The Proteasome: A Supramolecular Assembly Designed for Controlled Proteolysis;202
11.1;I. Introduction;202
11.2;II. The 20S Proteasome;203
11.3;III. Activators of the 20S Proteasome;217
11.4;IV. Conclusions;228
11.5;References;228
12;Chapter 7. Hsp70 Proteins in Protein Translocation;238
12.1;I. Introduction;238
12.2;II. Protein Translocation into Mitochondria and ER;239
12.3;III. Cytosolic Hsp70s Are Involved in Protein Translocation;242
12.4;IV. Hsp70 and Its Cofactors;243
12.5;V. Lumenal Hsp70s and Protein Translocation;244
12.6;VI. Other Roles for Hsp70s in Protein Translocation;252
12.7;VII. Conclusion;253
12.8;References;254
13;Chapter 8. Prolyl Isomerases;258
13.1;I. Perspective;259
13.2;II. Properties of Prolyl Peptide Bonds;259
13.3;III. Prolyl Isomerizations in Protein Folding;261
13.4;IV. Examples;265
13.5;V. Cis/trans Isomerizations at Nonprolyl Peptide Bonds;268
13.6;VI. Prolyl Isomerizations in Folded Proteins;270
13.7;VII. Prolyl Isomerases;271
13.8;VIII. Prolyl Isomerases as Catalysts of in Vitro Protein Folding;276
13.9;IX. The Trigger Factor;279
13.10;X. Catalysis of Prolyl Isomerization during de Novo Protein Folding;282
13.11;XI. Cellular Functions of Prolyl Isomerases;283
13.12;XII. Concluding Remarks;288
13.13;References;289
14;Chapter 9. Catalysis of Disulfide Bond Formation and Isomerization in Escherichia coli;298
14.1;I. Introduction;298
14.2;II. De Novo Formation of Disulfide Bonds in E. coli: The Discovery of DsbA;299
14.3;III. DsbA Is the Most Oxidizing Disulfide Catalyst;301
14.4;IV. DsbB Provides the Periplasm with Oxidizing Power;305
14.5;V. Correcting Wrong Disulfide Bonds in the Periplasm: Disulfide Bond Isomerization by DsbC;307
14.6;VI. DsbD Provides Reducing Equivalents in a Highly Oxidizing Environment;311
14.7;VII. Dsb Proteins and Cytochrome c Maturation;312
14.8;VIII. Disulfide Bond Formation Does Not Interfere with Disulfide Isomerization;313
14.9;IX. Concluding Remarks;313
14.10;References;314
15;Chapter 10. N-Glycan Processing and Glycoprotein Folding;318
15.1;I. Introduction;318
15.2;II. N-Glycan Processing in the Endoplasmic Reticulum;319
15.3;III. Glycoprotein Reglucosylation;323
15.4;IV. Chaperones and Protein Folding in the Endoplasmic Reticulum;335
15.5;V. Interaction of Glycoproteins with Calnexin and Calreticulin;336
15.6;VI. Calnexin and Calreticulin Are Lectins Specific for Monoglucosylated Oligosaccharides;338
15.7;VII. N-Glycan Processing and Glycoprotein Degradation;345
15.8;VIII. Summary and Future Perspectives;347
15.9;References;348
16;Chapter 11. Functional Genomic Approaches to Understanding Molecular Chaperones and Stress Responses;360
16.1;I. Introduction;360
16.2;II. Historical Perspective;361
16.3;III. Functional and Genomic Analysis of the Unfolded Protein Response;368
16.4;VI. UPR as a Case Study in the Comparison of Supervised versus Unsupervised Searches;391
16.5;References;395
17;Chapter 12. The Yeast Prion [PSI+]: Molecular Insights and Functional Consequences;406
17.1;I. Overview;406
17.2;II. Reversible Curing;410
17.3;III. Separating Prion Initiation and Propagation;415
17.4;IV. Conformational Replication in Vitro;417
17.5;V. Functional Consequences of the [PSI +] State;421
17.6;VI. Conclusion;424
17.7;References;424
18;Chapter 13. Clp ATPases and Their Role in Protein Unfolding and Degradation;428
18.1;I. Introduction;428
18.2;II. Clp ATPase Family of Proteins;429
18.3;III. Chaperone Activity of Clp ATPases and Their Participation in Proteolysis;430
18.4;IV. Structure of Clp ATPases: Alone and with Partner Proteases;431
18.5;V. Mechanism of Action of Clp ATPases as Chaperones and as Components of Degradation Machinery;434
18.6;VI. Clp ATPase Specificity Factors;440
18.7;VII. Summary;441
18.8;References;441
19;AUTHOR INDEX;446
20;SUBJECT INDEX;496
21;Color Plate Section;508



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.