E-Book, Deutsch, 720 Seiten, eBook
Hoppe / Lohmann / Markl Biophysik
1977
ISBN: 978-3-642-96298-1
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
Ein Lehrbuch
E-Book, Deutsch, 720 Seiten, eBook
ISBN: 978-3-642-96298-1
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
1. Bau der Zelle (Prokaryonten, Eukaryonten).- 1.1. Eigenschaften der Zelle.- 1.1.1. Molekül — Organelle — Zelle — Organismus.- 1.1.2. Die Zelle als Grundeinheit des Lebens.- 1.1.3. Die Größe der Zelle.- 1.1.4. Protozyte und Euzyte.- 1.2. Zellorganellen.- 1.2.1. Membranen.- 1.2.2. Zellkern.- 1.2.3. Grundplasma.- 1.2.4. Organellen aus einem Kompartiment.- 1.2.5. Zusammengesetzte Organellen.- 1.2.6. Zellhüllen und Zellverbindungen.- 1.3. Zellteilung.- 1.4. Evolution der Euzyte.- 1.5. Viren und Bakteriophagen.- Literaturauswahl.- 2. Der chemische Bau biologisch wichtiger Makromoleküle.- 2.1. Einleitung.- 2.2. Nucleinsäuren und ihre Bausteine.- 2.2.1. Nucleotide als Bausteine.- 2.2.2. Die kovalente Polynucleotid-Struktur.- 2.2.3. Das Prinzip der Basenpaarung.- 2.2.4. Die Doppelhelix der DNA.- 2.2.5. Eigenschaften der DNA.- 2.3. Proteine und ihre Bausteine.- 2.3.1. Aminosäuren als Bausteine.- 2.3.2. Das Prinzip der Verknüpfung.- 2.3.3. Eigenschaften der Aminosäuren.- 2.3.4. Die kovalente Struktur von Proteinen.- 2.3.5. Die Stabilisierung der Strukturelemente durch Wasserstoffbrücken (Sekundärstruktur).- 2.3.6. Die Raumstruktur.- Literaturauswahl.- 3. Physikalische Methoden zur Bestimmung der strukturellen Eigenschaften von Biomolekülen.- 3.1. Äußere Struktur.- 3.1.1. Allgemeines.- 3.1.2. Experimentelle Methoden.- Literaturauswahl.- 3.2. Innere Struktur.- 3.2.1. Strukturanalyse mit Röntgenstrahlen.- Literaturauswahl.- 3.2.2. Strukturanalyse mit Elektronenstrahlen (Elektronenmikroskopie).- Literaturauswahl.- 3.2.3. Lichtstreuung an Makromolekülen.- Literaturauswahl.- 3.2.4. Anwendung der Spektralphotometrie im UV- und sichtbaren Bereich.- Literaturauswahl.- 3.2.5. Anwendung der Infrarotspektroskopie.- Literaturauswahl.- 3.2.6. Anwendung der ORD- und CD-Spektroskopie.- Literaturauswahl.- 3.2.7. Anwendung des Mößbauereffektes auf Probleme der Biophysik.- Literaturauswahl.- 3.3. Elektronenspin-Resonanz-Spektroskopie.- 3.3.1. Allgemeine Grundlagen.- 3.3.2. Einige Anwendungen der ESR in der Biologie.- Literaturauswahl.- 3.4. Kernmagnetische Resonanz-Spektroskopie.- 3.4.1. Einleitung.- 3.4.2. Theorie.- 3.4.3. Experimentelle Technik.- 3.4.4. Anwendungen.- Literaturauswahl.- 4. Intra- und Intermolekulare Wechselwirkungen.- 4.1. Einleitung.- 4.2. Primärstruktur.- 4.2.1. Teilchen.- 4.2.2. Atome.- 4.2.3. Bindungen.- 4.3. Wechselwirkungen zwischen Strukturbausteinen.- 4.3.1. Die Abstoßung von Elektronenpaaren.- 4.3.2. Elektrostatische Kräfte.- 4.3.3. Dispersionskräfte.- 4.3.4. Wasserstoffbrücken.- Literaturauswahl.- 4.4. Charge-Transfer-Reaktionen in Biomolekülen.- Literaturauswahl.- 4.5. Debye-Hückel-Theorie (Kräfte zwischen Molekülen in Lösung).- 4.5.1. Debye-Hückel-Theorie.- 4.5.2. Quantenmechanische Diskussion.- Literaturauswahl.- 5. Energieübertragungsmechanismen.- 5.1. Allgemeine Grundlagen der Photophysik und Photochemie.- 5.1.1. Stationäre Zustände von Molekülen.- 5.1.2. Theoretische Grundlagen zur Beschreibung von Molekülzuständen.- 5.1.3. Übersicht über wichtige photophysikalische Prozesse.- 5.1.4. Mechanismen ausgewählter photophysikalischer Prozesse.- 5.1.5. Einige Anwendungen der Absorptions- und Fluoreszenzspektroskopie.- 5.1.6. Änderung der Basizität bzw. Acidität mit der Elektronenanregung.- 5.1.7. Fluoreszenzlöschung.- 5.1.8. Energiewanderung.- 5.1.9. Verzögerte Fluoreszenz.- 5.1.10. Photochemische Primärreaktionen.- Literaturauswahl.- 5.2. Energieübertragungsmechanismen.- 5.2.1. Klassische Betrachtung.- 5.2.2. Emittermolekül nahe an Absorberschicht.- 5.2.3. Energieübertragung in monomolekularen Schichtsystemen.- 5.2.4. Rückwirkung des Empfängermoleküls 2 auf das Sendermolekül 1.- 5.2.5. Emittermolekül im Echo eines Metallspiegels.- 5.2.6. Energieübertragung in kooperativen Systemen von Farbstoffmolekülen.- Literaturauswahl.- 5.3. Aktionsspektrometrie. Karl M.Hartmann. (Mit 15 Abbildungen).- 5.3.1. Was ist Aktionsspektrometrie?.- 5.3.2. Das Prinzip der Methode.- 5.3.3. Das Erzeugen monochromatischer Photonenflüsse.- 5.3.4. Strahlungsmessung.- 5.3.5. Der Photonenfluß in den Proben.- 5.3.6. Pigmentparameter.- 5.3.7. Aktionsspektren und ihre Bedeutung.- 5.3.8. Kinetische Modellbetrachtungen.- Literaturauswahl.- 6. Strahlenbiophysik.- 6.1. Einleitung.- 6.2. Die Strahlung und ihre Messung.- 6.2.1. Strahlenarten.- 6.2.2. Wechselwirkung Strahlung-Materie.- 6.2.3. Dosis und Dosisleistung.- 6.2.4. Dosimetrie.- 6.3. Beschreibung und Deutung der Strahlenwirkung.- 6.3.1. Dosiseffektkurven und Treffertheorie.- 6.3.2. Direkte und indirekte Strahlenwirkung.- 6.3.3. Energieübertragungsprozesse, Reaktionsgeschwindigkeiten, Impulsphoto-und-radiolyse.- 6.4. Molekulare Strahleneffekte.- 6.4.1. Strahlenchemie des Wassers.- 6.4.2. Radikale und Molekularprodukte.- 6.4.3. Modifizierung der Strahlenwirkung.- 6.5. Strahlenwirkung auf Biomoleküle und molekulare Strukturen.- 6.5.1. Strahlenwirkung auf Proteine.- 6.5.2. Strahlenwirkung auf Nucleinsäuren.- 6.5.3. Strahlenwirkung auf Membranstrukturen.- 6.6. Strahlenwirkung auf Zellen und Organismen.- 6.6.1. Strahlenwirkung auf die Zelle.- 6.6.2. Genetische Strahlenwirkungen.- 6.6.3. Strahlenstimulation.- 6.7. Strahlengefährdung und Strahlenschutz.- 6.7.1. Natürliche und zivilisatorische Strahlenbelastung.- 6.7.2. Strahlenschutz.- Literaturauswahl.- 7. Tracer-Methoden in der Biologie.- 7.1. Einleitung.- 7.2. Stabile und radioaktive Isotope.- 7.2.1. Vergleichende Betrachtung.- 7.2.2. Stabile Isotope und die Prinzipien ihrer Messung.- 7.2.3. Radioaktive Isotope.- 7.2.4. Die wichtigsten Meßmethoden für radioaktive Isotope.- 7.3. Isotopeneffekte.- 7.3.1. Hauptursachen von Isotopeneffekten.- 7.3.2. Kinetische Isotopeneffekte und ihre Bestimmung.- 7.4. Analytische Isotopenanwendung.- 7.4.1. Aktivierungsanalyse.- 7.4.2. Isotopen-Verdünnungsanalysen.- 7.4.3. Radioimmunologische Analyse.- 7.5. Beispiele für Isotopenanwendungen.- 7.5.1. Verteilungsstudien.- 7.5.2. Stoffwechsel und Transport.- 7.5.3. Sterischer Verlauf von Enzymreaktionen an prochiralen Systemen.- 7.5.4. Isotopenaustauschstudien.- Literaturauswahl.- 8. Energetische und statistische Beziehungen.- 8.1. Allgemeines.- 8.2. Grundbegriffe der Gleichgewichtsthermodynamik.- 8.2.1. Erster Hauptsatz, Enthalpie.- 8.2.2. Zweiter Hauptsatz, Entropie, Freie Enthalpie, Gleichgewicht, maximale Nutzbarkeit.- 8.2.3. Standardwerte der Zustandsgrößen.- 8.2.4. Grundreaktionsarbeit und Gleichgewichtskonstante.- 8.2.5. Chemisches Potential, Aktivität, Standardzustand.- 8.2.6. Phasengleichgewicht, Phasenregel.- 8.3. Interpretation thermodynamischer Größen durch die Molekularstatistik.- 8.3.1. Energieeigenwerte, Maxwell-Boltzmann-Verteilung, Zustands-summen.- 8.3.2. Zustandssumme und thermodynamische Funktionen, dritter Hauptsatz.- 8.3.3. Statistische Beschreibung des Gleichgewichts.- 8.4. Grenzen der Gleichgewichtsthermodynamik.- 8.4.1. Schwankungen bei kleiner Teilchenzahl.- 8.4.2. Irreversible Prozesse und Fließgleichgewicht.- 8.5. Energiefluß in der belebten Welt, ATP, Übertragungspotential.- 8.6. Theorie der absoluten Reaktionsgeschwindigkeiten nach Eyring.- 8.6.1. Definition kinetischer Parameter.- 8.6.2. Theorie des Übergangszustands.- Literaturauswähl.- 8.7. Methoden zur Bestimmung schneller Reaktionen.- 8.7.1. Das Prinzip der physikalischen Reaktionsanregung und der chemischen Relaxation.- 8.7.2. Anregungsverfahren.- 8.7.3. Optische Meßverfahren.- 8.7.4. Elektrische Meßverfahren.- 8.7.5. Dispersionsverfahren.- 8.7.6. Verbesserung von Zeitauflösung und Meßempfindlichkeit durch repetierende Meßverfahren.- Literaturauswahl.- 9. Enzyme als Biokatalysatoren.- 9.1. Einleitung.- 9.2. Wie wirken Enzyme?.- 9.3. Wie werden Enzyme reguliert?.- 9.4. Protein-Struktur (Globuläre Proteine).- 9.4.1. Wie falten sich Proteine?.- 9.4.2. Bausteine.- 9.4.3. Konstruktions-(Sekundärstruktur-) elemente.- 9.4.4. Dreidimensionale Struktur.- 9.5. Beispiele.- 9.5.1. Proteasen.- 9.5.2. Immunglobuline.- Literaturauswahl.- 10. Die biologische Funktion der Nucleinsäuren.- 10.1. Einleitung.- 10.1.1. Allgemeines.- 10.1.2. Vorkommen und Struktur von Nucleinsäuren.- 10.2. Die Replikation der DNA.- 10.2.1. Organisation der DNA in der Zelle.- 10.2.2. Prinzipien der DNA-Replikation.- 10.2.3. Replikationsmodelle.- 10.2.4. Der Replikationsapparat.- 10.2.5. Reverse Transcriptase.- 10.3. Genexpression.- 10.3.1. Transcription.- 10.3.2. Prozessierung von RNA-Vorstufen.- 10.3.3. Die Translation.- 10.4. Regulation der Genexpression.- 10.4.1. Regulation und Programmierung der Transcription.- 10.4.2. Kontrolle anderer Schritte der Genexpression.- Literaturauswahl.- 11. Membranen.- 11.1. Membran-Modelle.- 11.1.1. Einleitung: Vorkommen und Zusammensetzung von Biomembranen.- 11.1.2. Das Doppelschicht-Modell der Lipid-Anordnung in Biomembranen.- 11.1.3. Modelle der Protein-Anordnung in Biomembranen.- 11.1.4. Die Kohlenhydrat-Anordnung in Biomembranen.- 11.1.5. Zusammenfassung und Ausblick.- Literaturauswahl.- 11.2. Dynamische Struktur von Lipid-Doppelschichten und biologischen Membranen: Untersuchung mit Radikalsonden.- 11.2.1. Einleitung.- 11.2.2. Grundlegende Eigenschaften der Membranen.- 11.2.3. Radikalsonden (Spin-Label).- 11.2.4. Anwendungsbeispiele.- 11.2.5. Anwendung der Spin-Sonden-Methode auf biologische Membranen.- Literaturauswahl.- 11.3. Stofftransport durch biologische Membranen.- 11.3.1. Zusammensetzung und Struktur der Zellmembran.- 11.3.2. Phänomenologische Theorie des Membrantransports.- 11.3.3. Transport durch Diffusion.- 11.3.4. Flußkopplungsphänomene.- 11.3.5. Aktiver Transport.- 11.3.6. Transport durch Bläschenbildung.- Literaturauswahl.- 11.4. Elektrische Potentiale.- 11.4.1. Messung von Membranpotential und Membranstrom.- 11.4.2. Das Ruhepotential.- 11.4.3. Erregung und Membranpotential.- 11.4.4. Elektrotonus und Fortleitung des Aktionspotentials.- 11.4.5. Rezeptorpotentiale.- 11.4.6. Chemische synaptische Übertragung.- 11.4.7. Elektrische synaptische Übertragung.- Literaturauswahl.- 11.5. Biophysik des Atemgastransportes.- 11.5.1. Teilprozesse des Atemgastransportes beim Menschen.- 11.5.2. Physikalische Grundlagen.- 11.5.3. Der Atemgastransport im Blut.- 11.5.4. Der Gasaustausch in der Lunge.- 11.5.5. Der Gasaustausch im Gewebe.- Literaturauswahl.- 12. Sensorische Transduktionsprozesse.- 12.1. Grundzüge der Transduktionsmechanismen in Sinneszellen.- 12.1.1. Sensorische Transduktion — ein Steuerungsprozeß.- 12.1.2. Übersicht über die Teilmechanismen der Transduktion und ihre Funktionsbeziehungen.- 12.1.3. Die räumliche Anordnung der Teilmechanismen der Transduktion.- 12.1.4. Rezeptoren für verschiedene Reizmodalitäten: die Varianz der Sensorregion und die Invarianz der energieliefernden Strukturen.- 12.1.5. Funktionelle Folgen des epithelialen Aufbaus von Sinnesorganen.- 12.1.6. Integration der Teilmechanismen : der Rezeptorstromkreis.- Literaturauswahl.- 12.2. Molekulares Erkennen.- 12.2.1. Einleitung: Chemische Signale.- 12.2.2. Signalstoffaufnahme und –weiterleitung.- 12.2.3. Signalwandlung.- 12.2.4. Desaktivierung von Signalstoffen.- 12.2.5. Eingangs-Ausgangsbeziehungen bei Empfängern chemischer Signale.- 12.2.6. Die Spezifität chemischer Signalempfänger.- Literaturauswahl.- 13. Photobiophysik.- 13.1. Photosynthese.- 13.1.1. Einleitung.- 13.1.2. Energieleitungsprozesse.- 13.1.3. Photochemische Prozesse an den Reaktionszentren.- 13.1.4. Elektronentransferprozesse.- 13.1.5. Erzeugung elektrochemischer Potentiale durch vektoriellen Ladungstransport.- 13.1.6. Phosphorylierung.- 13.1.7. Zur Struktur der Thylakoidmembran.- 13.1.8. Schlußbetrachtungen.- Literaturauswahl.- 13.2. Zur Biophysik biologischer Oszillatoren.- 13.2.1. Einführung.- 13.2.2. Harmonische Schwingungen, Van der Pol’scher Oszillator.- 13.2.3. Störungen von Oszillatoren, Phasen-Response-Kurven.- 13.2.4. Ein anderer Blickpunkt: Rückkopplung.- 13.2.5. Kopplung mehrerer Oszillatoren.- Literaturauswahl.- 13.3. Photomorphogenese.- 13.3.1. Was ist Photomorphogenese?.- 13.3.2. Charakterisierung des Phytochroms in vivo.- 13.3.3. Lokalisation des funktionellen Phytochroms.- 13.3.4. Charakterisierung des Phytochroms in vivo.- 13.3.5. Regulation durch Phytochrom.- Literaturauswähl.- 13.4. Photorezeptor-Optik — Struktur und Funktion von Photorezeptoren.- 13.4.1. Einführung.- 13.4.2. Strukturelle Organisation der Photorezeptoren.- 13.4.3. Funktionelle Organisation der Photorezeptoren.- 13.4.4. Photorezeptor-Optik und Struktur der photorezeptiven Membran.- 13.4.5. Schlußfolgerung und Ausblick.- Literaturauswahl.- 13.5. Photorezeption und ihre molekularen Grundlagen.- 13.5.1. Einführung.- 13.5.2. Der Aufbau der Sehzellmembran.- 13.5.3. Die Reaktionen des Rhodopsins.- 13.5.4. Elektrochemie der Sehzellmembran.- 13.5.5. Die Veränderung der Empfindlichkeit der Sehzelle — Adaptation.- 13.5.6. Ausblick.- Literaturauswahl.- 14. Biomechanik.- 14.1. Die molekulare Physiologie der Muskelkontraktion.- 14.1.1. Einleitung.- 14.1.2. Muskelphysiologie.- 14.1.3. Muskelmechanik und -energetik.- 14.1.4. Struktur des Skeletmuskels.- 14.1.5. Der Mechanismus der Verkürzung.- 14.1.6. Die Proteine des kontraktilen Apparates und ihre enzymatische Aktivität.- 14.1.7. Der Aufbau der Myofilamente.- 14.1.8. Die Anordnung der Filamente in der Überlappungszone.- 14.1.9. Die Regulation der Muskelaktivität.- 14.1.10. Die enzymatische Aktivität von Myosin und der Mechanismus der ATP-Hydrolyse.- 14.1.11. Versuch der Korrelation von Querbrückenzyklus und ATP-Hydrolyse.- 14.1.12. Kinetik der Querbrückenmechanik.- 14.1.13. Zukünftige Entwicklungen.- Literaturauswahl.- 14.2. Biostatik.- 14.2.1. Definition.- 14.2.2. Dimensionsbetrachtung; biomechanische Konsequenzen der Absolutgrößen.- 14.2.3. Statische Systeme hoher Schlankheitsgrade.- 14.2.4. Pflanzen Wachstum und Optimalkonstruktion.- 14.2.5. Kräfte und Momente.- 14.2.6. Biegebeanspruchung und Biegefestigkeit.- 14.2.7. Körper gleicher Festigkeit.- Literaturauswahl.- 14.3. Biophysik des Schwimmens. Werner Nachtigall. (Mit 12 Abbildungen).- 14.3.1. Grundlegende strömungsmechanische Kenngrößen.- 14.3.2. Strömungsanpassung von Rümpfen schwimmender Tiere.- 14.3.3. Vortriebserzeugung bei schwimmenden Tieren.- Literaturauswahl.- 14.4. Biophysik des Fliegens.- 14.4.1. Definition.- 14.4.2. Umfang und Problematik des Fachgebiets.- 14.4.3. Kinematik der Schlagflügel.- 14.4.4. Aerodynamik.- 14.4.5. Energetik.- Literaturauswahl.- 14.5. Biomechanik des Blutkreislaufs.- 14.5.1. Vorbemerkung.- 14.5.2. Das Herz als Pumpe.- 14.5.3. Das Arteriensystem.- 14.5.4. Periphere Widerstandsgefäße (Mikrozirkulation).- 14.5.5. Das Venensystem.- 14.5.6. Einstellung und Regelung der Kreislaufgrößen.- Literaturauswahl.- 14.6. Flüssigkeitsströme in Pflanzen.- 14.6.1. Einführung.- 14.6.2. Der Xylemtransport.- 14.6.3. Der Phloemtransport.- Literaturauswahl.- 14.7. Schallrezeption am Beispiel höherer Säugetiere und des Menschen.- 14.7.1. Einleitung.- 14.7.2. Gehörorgan.- 14.7.3. Frequenzauflösungsvermögen.- 14.7.4. Zeitauflösungsvermögen.- 14.7.5. Funktionsschemata und Funktionsmodelle.- Literaturauswahl.- 14.8. Echoortung. Gerhard Neuweiler. (Mit 20 Abbildungen).- 14.8.1. Einleitung.- 14.8.2. Die Ortungsleistungen der Fledermäuse.- 14.8.3. Gibt es eine Theorie der Echoortung?.- 14.8.4. Die Ortungslaute der Fledermäuse.- 14.8.5. Hörleistungen bei der Echoortung.- Literaturauswahl.- 15. Elektrorezeption und Ortung im elektrischen Feld.- 15.1. Einleitung.- 15.2. Natürliche Quellen für eine bioelektrische Reizmodalität.- 15.2.1. Quellen physikalischer Herkunft.- 15.2.2. Quellen biologischer Herkunft.- 15.3. Elektrorezeptoren und Elektrorezeption.- 15.4. Ortungsmechanismen und ihre neuronalen Grundlagen.- 15.4.1. Elektroortung mittels tonischer Elektrorezeptoren.- 15.4.2. Elektroortung mittels phasischer Elektrorezeptoren.- Literaturauswahl.- 16. Geo-Biophysik: Schwerefeld, Magnetfeld und Organismen.- 16.1. Einleitung.- 16.2. Die Wirkung der Schwerkraft auf Organismen.- 16.2.1. Morphogenetische Wirkungen (Gravimorphismus).- 16.2.2. Orientierungswirkung der Schwerkraft auf frei bewegliche Organismen.- 16.2.3. Die Schwerkraftrichtung als Referenz zur Beurteilung von Richtungen mit anderen Sinnessystemen.- 16.3. Die Wirkung des Erdmagnetfeldes auf Organismen.- 16.3.1. Orientierung von Vögeln im Magnetfeld.- 16.3.2. Orientierung von Bienen im Magnetfeld.- 16.3.3. Mögliche Wirkungen des Erdmagnetfeldes auf Organismen.- Literaturauswahl.- 17. Kybernetik.- 17.1. Methoden der Kybernetik (Kommunikationstheorie, Systemtheorie homogener Schichten und Mustererkennung).- 17.1.1. Einleitung.- 17.1.2. Die Kommunikationstheorie.- 17.1.3. Die Systemtheorie homogener Schichten.- Literaturauswahl.- 17.2. Informationsübertragung und -Verarbeitung im Nervensystem, dargestellt am Beispiel der neurophysiologischen Grundlagen des Sehens.- 17.2.1. Einleitung.- 17.2.2. Die Netzhaut (Retina).- 17.2.3. Die Fortleitung der Information von der Retina in das Gehirn.- 17.2.4. Kurze Schlußbemerkung über Wahrnehmung.- Literaturauswahl.- 17.3. Systemanalytische Verhaltensforschung am Beispiel der Fliege.- 17.3.1. Einleitung.- 17.3.2. Systemanalyse der musterinduzierten Flugorientierung von Insekten.- 17.3.3. Orientierungsverhalten gegenüber einer komplexen Umwelt.- 17.3.4. Nichtlineare Systemtheorie der musterinduzierten Flugorientierung.- 17.3.5. Von der makroskopischen zur mikroskopischen Beschreibung.- 17.3.6. Résumé und Ausblick.- Literaturauswahl.- 18. Evolution.- 18.1. Modell der Selbstorganisation und präbiotischen Evolution.- 18.1.1. Einführung.- 18.1.2. Allgemeines über Denkmodelle.- 18.1.3. Prinzip des Modellansatzes.- 18.1.4. Periodizität in der Umgebungsstruktur. Auslösung eines Verviel-fältigungs-Mutations-Selektionszyklus.- 18.1.5. Reichtum in Umgebungsbedingungen als Antrieb in Richtung höherer Organisation. Verlassen des überfüllten Bereichs durch geeignete Systeme führt zur Erweiterung des Lebensraumes.- 18.1.6. Zufall und zweckgerichtetes Verhalten.- 18.1.7. Kenntnis K als Wertmaß eines durch Selbstorganisation von Materie entstandenen Systems.- 18.1.8. Hauptaspekte des speziellen Modells. Zunahme des Organisationsgrades durch Loslösung von eng umgrenzten Umgebungsbedingungen (Feinporosität, Milieuspezifität, zeitliche Periodizität).- 18.1.9. Diskussion wichtiger Teilschritte.- Literaturauswahl.- 18.2. Vom Makromolekül zur primitiven Zelle — die Entstehung biologischer Funktion.- 18.2.1. Was ist Evolution?.- 18.2.2. Thermodynamische Grundlagen der Evolutionstheorie.- 18.2.3. Einige Grundbegriffe.- 18.2.4. Information und Funktion.- 18.2.5. Die statistische Phase der Evolution.- 18.2.6. Die phänomenologischen Gleichungen der Evolution.- 18.2.7. Ergebnisse der Evolutionstheorie.- 18.2.8. Schlußfolgerungen.- 18.2.9. Anhang: Katalytische Kreise.- 18.2.10. Zusammenstellung der Symbole.- Literaturauswahl.




