Evolution to LTE-Advanced
Buch, Englisch, 576 Seiten, Format (B × H): 174 mm x 251 mm, Gewicht: 1109 g
ISBN: 978-0-470-66000-3
Verlag: Wiley
Key updates for the second edition of LTE for UMTS are focused on the new topics from Release 9 & 10, and include:
- LTE-Advanced;
- Self optimized networks (SON);
- Transport network dimensioning;
- Measurement results.
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
Preface xvii
Acknowledgements xix
List of Abbreviations xxi
1 Introduction 1
Harry Holma and Antti Toskala
1.1 Mobile Voice Subscriber Growth 1
1.2 Mobile Data Usage Growth 1
1.3 Evolution of Wireline Technologies 3
1.4 Motivation and Targets for LTE 4
1.5 Overview of LTE 5
1.6 3GPP Family of Technologies 6
1.7 Wireless Spectrum 8
1.8 New Spectrum Identified by WRC-07 9
1.9 LTE-Advanced 10
2 LTE Standardization 13
Antti Toskala
2.1 Introduction 13
2.2 Overview of 3GPP Releases and Process 13
2.3 LTE Targets 15
2.4 LTE Standardization Phases 16
2.5 Evolution Beyond Release 8 18
2.6 LTE-Advanced for IMT-Advanced 20
2.7 LTE Specifications and 3GPP Structure 20
References 21
3 System Architecture Based on 3GPP SAE 23
Atte L¨ansisalmi and Antti Toskala
3.1 System Architecture Evolution in 3GPP 23
3.2 Basic System Architecture Configuration with only E-UTRAN Access Network 25
3.2.1 Overview of Basic System Architecture Configuration 25
3.2.2 Logical Elements in Basic System Architecture Configuration 26
3.2.3 Self-configuration of S1-MME and X2 Interfaces 35
3.2.4 Interfaces and Protocols in Basic System Architecture Configuration 36
3.2.5 Roaming in Basic System Architecture Configuration 40
3.3 System Architecture with E-UTRAN and Legacy 3GPP Access Networks 41
3.3.1 Overview of 3GPP Inter-working System Architecture Configuration 41
3.3.2 Additional and Updated Logical Elements in 3GPP Inter-working System Architecture Configuration 42
3.3.3 Interfaces and Protocols in 3GPP Inter-working System Architecture Configuration 44
3.3.4 Inter-working with Legacy 3GPP CS Infrastructure 45
3.4 System Architecture with E-UTRAN and Non-3GPP Access Networks 46
3.4.1 Overview of 3GPP and Non-3GPP Inter-working System Architecture Configuration 46
3.4.2 Additional and Updated Logical Elements in 3GPP Inter-working System Architecture Configuration 48
3.4.3 Interfaces and Protocols in Non-3GPP Inter-working System Architecture Configuration 51
3.5 Inter-working with cdma2000® Access Networks 52
3.5.1 Architecture for cdma2000® HRPD Inter-working 52
3.5.2 Additional and Updated Logical Elements for cdma2000® HRPD Inter-working 54
3.5.3 Protocols and Interfaces in cdma2000® HRPD Inter-working 55
3.5.4 Inter-working with cdma2000® 1xRTT 56
3.6 IMS Architecture 56
3.6.1 Overview 56
3.6.2 Session Management and Routing 58
3.6.3 Databases 59
3.6.4 Services Elements 59
3.6.5 Inter-working Elements 59
3.7 PCC and QoS 60
3.7.1 PCC 60
3.7.2 QoS 62
References 65
4 Introduction to OFDMA and SC-FDMA and to MIMO in LTE 67
Antti Toskala and Timo Lunttila
4.1 Introduction 67
4.2 LTE Multiple Access Background 67
4.3 OFDMA Basics 70
4.4 SC-FDMA Basics 76
4.5 MIMO Basics 80
4.6 Summary 82
References 82
5 Physical Layer 83
Antti Toskala, Timo Lunttila, Esa Tiirola, Kari Hooli, Mieszko Chmiel and Juha Korhonen
5.1 Introduction 83
5.2 Transport Channels and their Mapping to the Physical Channels 83
5.3 Modulation 85
5.4 Uplink User Data Transmission 86
5.5 Downlink User Data Transmission 90
5.6 Uplink Physical Layer Signaling Transmission 93
5.6.1 Physical Uplink Control Channel, PUCCH 94
5.6.2 PUCCH Configuration 98
5.6.3 Control Signaling on PUSCH 102
5.6.4 Uplink Reference Signals 104
5.7 PRACH Structure 109
5.7.1 Physical Random Access Channel 109
5.7.2 Preamble Sequence 110
5.8 Downlink Physical Layer Signaling Transmission 112
5.8.1 Physical Control Format Indicator Channel (PCFICH) 112
5.8.2 Physical Downlink Control Channel (PDCCH) 113
5.8.3 Physical HARQ Indicator Channel (PHICH) 115
5.8.4 Cell-specific Reference Signal 116
5.8.5 Downlink Transmission Modes 117
5.8.6 Physical Broadcast Channel (PBCH) 119
5.8.7 Synchronization Signal 120
5.9 Physical Layer Procedures 120
5.9.1 HARQ Procedure 121
5.9.2 Timing Advance 122
5.9.3 Power Control 123
5.9.4 Paging 124
5.9.5 Random Access Procedure 124
5.9.6 Channel Feedback Reporting Procedure 127
5.9.7 Multiple Input Multiple Output (MIMO) Antenna Technology 132
5.9.8 Cell Search Procedure 134
5.9.9 Half-duplex Operation 134
5.10 UE Capability Classes and Supported Features 135
5.11 Physical Layer Measurements 136
5.11.1 eNodeB Measurements 136
5.11.2 UE Measurements and Measurement Procedure 137
5.12 Physical Layer Parameter Configuration 137
5.13 Summary 138
References 139
6 LTE Radio Protocols 141
Antti Toskala, Woonhee Hwang and Colin Willcock
6.1 Introduction 141
6.2 Protocol Architecture 141
6.3 The Medium Access Control 144
6.3.1 Logical Channels 145
6.3.2 Data Flow in MAC Layer 146
6.4 The Radio Link Control Layer 147
6.4.1 RLC Modes of Operation 148
6.4.2 Data Flow in the RLC Layer 148
6.5 Packet Data Convergence Protocol 150
6.6 Radio Resource Control (RRC) 151
6.6.1 UE States and State Transitions Including Inter-RAT 151
6.6.2 RRC Functions and Signaling Procedures 152
6.6.3 Self Optimization – Minimization of Drive Tests 167
6.7 X2 Interface Protocols 169
6.7.1 Handover on X2 Interface 169
6.7.2 Load Management 171
6.8 Understanding the RRC ASN.1 Protocol Definition 172
6.8.1 ASN.1 Introduction 172
6.8.2 RRC Protocol Definition 173
6.9 Early UE Handling in LTE 182
6.10 Summary 183
References 183
7 Mobility 185
Chris Callender, Harri Holma, Jarkko Koskela and Jussi Reunanen
7.1 Introduction 185
7.2 Mobility Management in Idle State 186
7.2.1 Overview of Idle Mode Mobility 186
7.2.2 Cell Selection and Reselection Process 187
7.2.3 Tracking Area Optimization 189
7.3 Intra-LTE Handovers 190
7.3.1 Procedure 190
7.3.2 Signaling 192
7.3.3 Handover Measurements 195
7.3.4 Automatic Neighbor Relations 195
7.3.5 Handover Frequency 196
7.3.6 Handover Delay 197
7.4 Inter-system Handovers 198
7.5 Differences in E-UTRAN and UTRAN Mobility 199
7.6 Summary 201
References 201
8 Radio Resource Management 203
Harri Holma, Troels Kolding, Daniela Laselva, Klaus Pedersen, Claudio Rosa and Ingo Viering
8.1 Introduction 203
8.2 Overview of RRM Algorithms 203
8.3 Admission Control and QoS Parameters 204
8.4 Downlink Dynamic Scheduling and Link Adaptation 206
8.4.1 Layer 2 Scheduling and Link Adaptation Framework 206
8.4.2 Frequency Domain Packet Scheduling 206
8.4.3 Combined Time and Frequency Domain Scheduling Algorithms 209
8.4.4 Packet Scheduling with MIMO 211
8.4.5 Downlink Packet Scheduling Illustrations 211
8.5 Uplink Dynamic Scheduling and Link Adaptation 216
8.5.1 Signaling to Support Uplink Link Adaptation and Packet Scheduling 219
8.5.2 Uplink Link Adaptation 223
8.5.3 Uplink Packet Scheduling 223
8.6 Interference Management and Power Settings 227
8.6.1 Downlink Transmit Power Settings 227
8.6.2 Uplink Interference Coordination 228
8.7 Discontinuous Transmission and Reception (DTX/DRX) 230
8.8 RRC Connection Maintenance 233
8.9 Summary 233
References 234
9 Self Organizing Networks (SON) 237
Krzysztof Kordybach, Seppo Hamalainen, Cinzia Sartori and Ingo Viering
9.1 Introduction 237
9.2 SON Architecture 238
9.3 SON Functions 241
9.4 Self-Configuration 241
9.4.1 Configuration of Physical Cell ID 242
9.4.2 Automatic Neighbor Relations (ANR) 243
9.5 Self-Optimization and Self-Healing Use Cases 244
9.5.1 Mobility Load Balancing (MLB) 245
9.5.2 Mobility Robustness Optimization (MRO) 248
9.5.3 RACH Optimization 251
9.5.4 Energy Saving 251
9.5.5 Summary of the Available SON Procedures 252
9.5.6 SON Management 252
9.6 3GPP Release 10 Use Cases 253
9.7 Summary 254
References 255
10 Performance 257
Harri Holma, Pasi Kinnunen, Istv´an Z. Kov´acs, Kari Pajukoski, Klaus Pedersen and Jussi Reunanen
10.1 Introduction 257
10.2 Layer 1 Peak Bit Rates 257
10.3 Terminal Categories 260
10.4 Link Level Performance 261
10.4.1 Downlink Link Performance 261
10.4.2 Uplink Link Performance 262
10.5 Link Budgets 265
10.6 Spectral Efficiency 270
10.6.1 System Deployment Scenarios 270
10.6.2 Downlink System Performance 273
10.6.3 Uplink System Performance 275
10.6.4 Multi-antenna MIMO Evolution Beyond 2 × 2 276
10.6.5 Higher Order Sectorization (Six Sectors) 283
10.6.6 Spectral Efficiency as a Function of LTE Bandwidth 285
10.6.7 Spectral Efficiency Evaluation in 3GPP 286
10.6.8 Benchmarking LTE to HSPA 287
10.7 Latency 288
10.7.1 User Plane Latency 288
10.8 LTE Refarming to GSM Spectrum 290
10.9 Dimensioning 291
10.10 Capacity Management Examples from HSPA Networks 293
10.10.1 Data Volume Analysis 293
10.10.2 Cell Performance Analysis 297
10.11 Summary 299
References 301
11 LTE Measurements 303
Marilynn P. Wylie-Green, Harri Holma, Jussi Reunanen and Antti Toskala
11.1 Introduction 303
11.2 Theoretical Peak Data Rates 303
11.3 Laboratory Measurements 305
11.4 Field Measurement Setups 306
11.5 Artificial Load Generation 307
11.6 Peak Data Rates in the Field 310
11.7 Link Adaptation and MIMO Utilization 311
11.8 Handover Performance 313
11.9 Data Rates in Drive Tests 315
11.10 Multi-user Packet Scheduling 317
11.11 Latency 320
11.12 Very Large Cell Size 321
11.13 Summary 323
References 323
12 Transport 325
Torsten Musiol
12.1 Introduction 325
12.2 Protocol Stacks and Interfaces 325
12.2.1 Functional Planes 325
12.2.2 Network Layer (L3) – IP 327
12.2.3 Data Link Layer (L2) – Ethernet 328
12.2.4 Physical Layer (L1) – Ethernet Over Any Media 329
12.2.5 Maximum Transmission Unit Size Issues 330
12.2.6 Traffic Separation and IP Addressing 332
12.3 Transport Aspects of Intra-LTE Handover 334
12.4 Transport Performance Requirements 335
12.4.1 Throughput (Capacity) 335
12.4.2 Delay (Latency), Delay Variation (Jitter) 338
12.4.3 TCP Issues 339
12.5 Transport Network Architecture for LTE 340
12.5.1 Implementation Examples 340
12.5.2 X2 Connectivity Requirements 341
12.5.3 Transport Service Attributes 342
12.6 Quality of Service 342
12.6.1 End-to-End QoS 342
12.6.2 Transport QoS 343
12.7 Transport Security 344
12.8 Synchronization from Transport Network 347
12.8.1 Precision Time Protocol 347
12.8.2 Synchronous Ethernet 348
12.9 Base Station Co-location 348
12.10 Summary 349
References 349
13 Voice over IP (VoIP) 351
Harri Holma, Juha Kallio, Markku Kuusela, Petteri Lund´en, Esa Malkam¨aki, Jussi Ojala and Haiming Wang
13.1 Introduction 351
13.2 VoIP Codecs 351
13.3 VoIP Requirements 353
13.4 Delay Budget 354
13.5 Scheduling and Control Channels 354
13.6 LTE Voice Capacity 357
13.7 Voice Capacity Evolution 364
13.8 Uplink Coverage 365
13.9 Circuit Switched Fallback for LTE 368
13.10 Single Radio Voice Call Continuity (SR-VCC) 370
13.11 Summary 372
References 373
14 Performance Requirements 375
Andrea Ancora, Iwajlo Angelow, Dominique Brunel, Chris Callender, Harri Holma, Peter Muszynski, Earl Mc Cune and Laurent No¨el
14.1 Introduction 375
14.2 Frequency Bands and Channel Arrangements 375
14.2.1 Frequency Bands 375
14.2.2 Channel Bandwidth 378
14.2.3 Channel Arrangements 379
14.3 eNodeB RF Transmitter 380
14.3.1 Operating Band Unwanted Emissions 381
14.3.2 Co-existence with Other Systems on Adjacent Carriers Within the Same Operating Band 383
14.3.3 Co-existence with Other Systems in Adjacent Operating Bands 385
14.3.4 Transmitted Signal Quality 389
14.4 eNodeB RF Receiver 392
14.5 eNodeB Demodulation Performance 398
14.6 User Equipment Design Principles and Challenges 403
14.6.1 Introduction 403
14.6.2 RF Subsystem Design Challenges 403
14.6.3 RF-baseband Interface Design Challenges 410
14.6.4 LTE Versus HSDPA Baseband Design Complexity 414
14.7 UE RF Transmitter 418
14.7.1 LTE UE Transmitter Requirement 418
14.7.2 LTE Transmit Modulation Accuracy, EVM 418
14.7.3 Desensitization for Band and Bandwidth Combinations (De-sense) 419
14.7.4 Transmitter Architecture 420
14.8 UE RF Receiver Requirements 421
14.8.1 Reference Sensitivity Level 422
14.8.2 Introduction to UE Self-Desensitization Contributors in FDD UEs 424
14.8.3 ACS, Narrowband Blockers and ADC Design Challenges 429
14.8.4 EVM Contributors: A Comparison between LTE and WCDMA Receivers 435
14.9 UE Demodulation Performance 440
14.9.1 Transmission Modes 440
14.9.2 Channel Modeling and Estimation 443
14.9.3 Demodulation Performance 443
14.10 Requirements for Radio Resource Management 446
14.10.1 Idle State Mobility 447
14.10.2 Connected State Mobility When DRX is not Active 447
14.10.3 Connected State Mobility When DRX is Active 450
14.10.4 Handover Execution Performance Requirements 450
14.11 Summary 451
References 452
15 LTE TDD Mode 455
Che Xiangguang, Troels Kolding, Peter Skov, Wang Haiming and Antti Toskala
15.1 Introduction 455
15.2 LTE TDD Fundamentals 455
15.2.1 The LTE TDD Frame Structure 457
15.2.2 Asymmetric Uplink/Downlink Capacity Allocation 459
15.2.3 Co-existence with TD-SCDMA 459
15.2.4 Channel Reciprocity 460
15.2.5 Multiple Access Schemes 461
15.3 TDD Control Design 462
15.3.1 Common Control Channels 462
15.3.2 Sounding Reference Signal 464
15.3.3 HARQ Process and Timing 465
15.3.4 HARQ Design for UL TTI Bundling 466
15.3.5 UL HARQ-ACK/NACK Transmission 467
15.3.6 DL HARQ-ACK/NACK Transmission 467
15.3.7 DL HARQ-ACK/NACK Transmission with SRI and/or CQI over PUCCH 468
15.4 Semi-persistent Scheduling 469
15.5 MIMO and Dedicated Reference Signals 471
15.6 LTE TDD Performance 472
15.6.1 Link Performance 473
15.6.2 Link Budget and Coverage for the TDD System 473
15.6.3 System Level Performance 477
15.7 Evolution of LTE TDD 483
15.8 LTE TDD Summary 484
References 484
16 LTE-Advanced 487
Mieszko Chmiel, Mihai Enescu, Harri Holma, Tommi Koivisto, Jari Lindholm, Timo Lunttila, Klaus Pedersen, Peter Skov, Timo Roman, Antti Toskala and Yuyu Yan
16.1 Introduction 487
16.2 LTE-Advanced and IMT-Advanced 487
16.3 Requirements 488
16.3.1 Backwards Compatibility 488
16.4 3GPP LTE-Advanced Study Phase 489
16.5 Carrier Aggregation 489
16.5.1 Impact of the Carrier Aggregation for the Higher Layer Protocol and Architecture 492
16.5.2 Physical Layer Details of the Carrier Aggregation 493
16.5.3 Changes in the Physical Layer Uplink due to Carrier Aggregation 493
16.5.4 Changes in the Physical Layer Downlink due to Carrier Aggregation 494
16.5.5 Carrier Aggregation and Mobility 494
16.5.6 Carrier Aggregation Performance 495
16.6 Downlink Multi-antenna Enhancements 496
16.6.1 Reference Symbol Structure in the Downlink 496
16.6.2 Codebook Design 499
16.6.3 System Performance of Downlink Multi-antenna Enhancements 501
16.7 Uplink Multi-antenna Techniques 502
16.7.1 Uplink Multi-antenna Reference Signal Structure 503
16.7.2 Uplink MIMO for PUSCH 503
16.7.3 Uplink MIMO for Control Channels 504
16.7.4 Uplink Multi-user MIMO 505
16.7.5 System Performance of Uplink Multi-antenna Enhancements 505
16.8 Heterogeneous Networks 506
16.9 Relays 508
16.9.1 Architecture (Design Principles of Release 10 Relays) 508
16.9.2 DeNB – RN Link Design 510
16.9.3 Relay Deployment 511
16.10 Release 11 Outlook 512
16.11 Conclusions 513
References 513
17 HSPA Evolution 515
Harri Holma, Karri Ranta-aho and Antti Toskala
17.1 Introduction 515
17.2 Discontinuous Transmission and Reception (DTX/DRX) 515
17.3 Circuit Switched Voice on HSPA 517
17.4 Enhanced FACH and RACH 520
17.5 Downlink MIMO and 64QAM 521
17.5.1 MIMO Workaround Solutions 523
17.6 Dual Cell HSDPA and HSUPA 524
17.7 Multicarrier and Multiband HSDPA 526
17.8 Uplink 16QAM 527
17.9 Terminal Categories 528
17.10 Layer 2 Optimization 529
17.11 Single Frequency Network (SFN) MBMS 531
17.12 Architecture Evolution 531
17.13 Summary 533
References 535
Index 537