Buch, Englisch, 304 Seiten, Format (B × H): 158 mm x 236 mm, Gewicht: 1010 g
Reihe: Universitext
A Modeling, White Noise Functional Approach
Buch, Englisch, 304 Seiten, Format (B × H): 158 mm x 236 mm, Gewicht: 1010 g
Reihe: Universitext
ISBN: 978-0-387-89487-4
Verlag: Springer
The first edition of Stochastic Partial Differential Equations: A Modeling, White Noise Functional Approach, gave a comprehensive introduction to SPDEs. In this, the second edition, the authors build on the theory of SPDEs driven by space-time Brownian motion, or more generally, space-time Lévy process noise. Applications of the theory are emphasized throughout. The stochastic pressure equation for fluid flow in porous media is treated, as are applications to finance.
Graduate students in pure and applied mathematics as well as researchers in SPDEs, physics, and engineering will find this introduction indispensible. Useful exercises are collected at the end of each chapter.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Naturwissenschaften Physik Physik Allgemein Theoretische Physik, Mathematische Physik, Computerphysik
- Mathematik | Informatik Mathematik Mathematische Analysis Differentialrechnungen und -gleichungen
- Technische Wissenschaften Technik Allgemein Mathematik für Ingenieure
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
- Mathematik | Informatik Mathematik Stochastik
- Mathematik | Informatik Mathematik Mathematik Interdisziplinär Finanz- und Versicherungsmathematik
Weitere Infos & Material
Preface to the Second Edition.- Preface to the First Edition.- Introduction.- Framework.- Applications to stochastic ordinary differential equations.- Stochastic partial differential equations driven by Brownian white noise.- Stochastic partial differential equations driven by Lévy white noise.- Appendix A. The Bochner-Minlos theorem.- Appendix B. Stochastic calculus based on Brownian motion.- Appendix C. Properties of Hermite polynomials.- Appendix D. Independence of bases in Wick products.- Appendix E. Stochastic calculus based on Lévy processes- References.- List of frequently used notation and symbols.- Index.