E-Book, Englisch, 377 Seiten, eBook
Hoffmann Assessing Risk Assessment
1. Auflage 2017
ISBN: 978-3-658-20032-9
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
Towards Alternative Risk Measures for Complex Financial Systems
E-Book, Englisch, 377 Seiten, eBook
ISBN: 978-3-658-20032-9
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
1;Table of Contents;5
2;List of Tables and Figures;8
3;Abstract;10
4;Zusammenfassung;12
5;Introduction;14
6;Part I:Concepts, Model Level and Risk Assessment;33
6.1;1. Introduction to Part I;34
6.2;2. Literature Synthesis, Theoretical Background and Research Focus;36
6.2.1;2.1. Complexity and Modern Financial Systems;36
6.2.2;2.2. Risk and Risk Management in the Financial World;43
6.2.2.1;2.2.1. Risk modeling;48
6.2.2.2;2.2.2. Value at Risk (VaR);52
6.2.2.3;2.2.3. Expected Shortfall (ES);58
6.2.3;2.3. Systemic Risk Assessment;60
6.2.3.1;2.3.1. Tools primarily for regulators: Conditional Value at Risk (CoVaR) and Systemic Expected Shortfall (SES);62
6.2.3.2;2.3.2. Extreme Value Theory (EVT);64
6.2.4;2.4. General Appraisal;66
6.2.4.1;2.4.1. Advantages of conventional risk models and measures;67
6.2.4.2;2.4.2. Weaknesses of conventional risk models and measures;69
6.2.5;2.5. Excursus: Benoît Mandelbrot's Plea for Fractal Methods;74
6.3;3. Research Questions;83
6.4;4. On an Adequate Concept of Risk and Systemic Risk in the realm of Banking;85
6.4.1;4.1. The Notion of Risk;85
6.4.2;4.2. The Concept of Systemic Risk;101
6.5;5. On the Relevance of Systemic Risks for Banks;113
6.5.1;5.1. Why should Banks take account of, and try to deal with, Systemic Risks?;113
6.5.2;5.2. What are concrete Systemic Risk Scenarios for Banks?;125
6.6;6. Dealing with Quantitative Risk Management in Banking as a Complex Systems Problem;132
6.6.1;6.1. A Trichotomy of Scientific Problems – Warren Weaver’s Scheme as a General Answer to How to Manage Complexity;137
6.6.1.1;6.1.1. Tackling disorganized complexity versus organized simplicity;137
6.6.1.2;6.1.2. Disorganized complexity and statistical techniques;140
6.6.1.3;6.1.3. Tackling organized complexity: open questions remain;143
6.6.1.4;6.1.4. Synopsis;145
6.6.2;6.2. Weaver’s Taxonomy Revisited: Attempts of Clarification, Extension and Refinement;148
6.6.2.1;6.2.1. Approaches towards the operationalization of Weaver’s concept of organized complexity;148
6.6.2.2;6.2.2. The bigger picture of complexity and randomness;151
6.6.3;6.3. Organized Complexity, Financial Systems and Assessing Extreme and Systemic Risks;161
6.6.3.1;6.3.1. On the level of structures;163
6.6.3.2;6.3.2. On the level of events;164
6.6.4;6.4. A Tentative Bottom Line;166
6.7;7. The Fundamental Inadequacy of Probability Theory as a Foundation for Modeling Systemic and Extreme Risk in a Banking Context;168
6.7.1;7.1. Philosophical Roots of the Problem of Induction: some Preliminaries;170
6.7.2;7.2. Probability Theory in a Nutshell, its Embeddedness and its Applications;173
6.7.3;7.3. The Central Argument against using Probability Theory for Financial Risk Management;184
6.7.4;7.4. Linking the Central Argument with the Current State of the Literature (IIIa)-c));192
6.8;8. Conclusion to Part I;195
6.8.1;8.1. Résumé;196
6.8.2;8.2. Outlook: Explanatory Models for In-House Risk Management in Banking;199
7;Part II:The Transition to the Decision Level, Risk Assessment andManagement;203
7.1;9. Introduction to Part II;204
7.2;10. The Critical Turn: The Renaissance of Practical Wisdom;206
7.3;11. Scenario Planning in a Nutshell and its Role in Risk Management in Banking;212
7.4;12. Strengths and Weaknesses of Scenario Planning as a Risk Management Tool;220
7.5;13. Deriving Lessons for Rethinking the Approach to Assessing Extreme and Systemic Risks;226
8;Part III:In Search of a New Paradigm: The Third Way as a Road toLogic-Based Risk Modeling (LBR);230
8.1;14. Introduction to Part III;231
8.2;15. Theoretical Foundations of a Logic-Based Risk Modeling (LBR) Approach;236
8.2.1;15.1. A less Restrictive Axiomatization;236
8.2.2;15.2. Non-Probabilistic Models of Uncertainty;244
8.2.3;15.3. Ranking Theory;248
8.2.4;15.4. Syntax of a Language for Describing Contracts and Correlations;251
8.2.5;15.5. Semantics: Financial Contracts as Uncertain Sequences in a Non-Probabilistic Risk Model Context;257
8.2.5.1;15.5.1. Uncertain sequences by example;258
8.2.5.2;15.5.2. From contract value to risk;262
8.2.5.3;15.5.3. Formalization of the approach;263
8.2.5.4;15.5.4. Concrete instantiations of uncertainty monads: ranking functions;1
8.2.5.5;15.5.5. Evaluating risk models;275
8.2.6;15.6. Model Interpretation and Output: An Exact, Explanatory Scenario Planning Method;280
8.3;16. Case Study: LTCM and Extreme Risk;284
8.3.1;16.1. Example Trade;285
8.3.2;16.2. A Fixed Income Portfolio in LBR;286
8.3.3;16.3. Analysis;289
8.3.3.1;16.3.1. Overview;290
8.3.3.2;16.3.2. Zoom and filter;291
8.3.3.3;16.3.3. Details on demand;293
8.3.4;16.4. Discussion and Conclusion;293
8.4;17. Managerial Implications;296
8.5;18. Scales of Measurement and Qualitative Probabilities;302
8.6;19. Model Validation;308
9;Part IV:Meta Level: Thinking about Thinking and Practices – What itMeans to Reach Effective Risk Management Decisions;325
9.1;20. Introduction to Part IV as Overall Conclusion;326
9.2;21. Escaping the Traps for Logicians: Towards Decision-Making Competency in Risk Management;328
9.3;22. Final Remarks and a Path for Future Research;341
10;References;346
11;Appendices;377