Ho / Basu | Data Complexity in Pattern Recognition | Buch | 978-1-84996-557-6 | sack.de

Buch, Englisch, 300 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 482 g

Reihe: Advanced Information and Knowledge Processing

Ho / Basu

Data Complexity in Pattern Recognition


1. Auflage. Softcover version of original hardcover Auflage 2006
ISBN: 978-1-84996-557-6
Verlag: Springer

Buch, Englisch, 300 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 482 g

Reihe: Advanced Information and Knowledge Processing

ISBN: 978-1-84996-557-6
Verlag: Springer


Machines capable of automatic pattern recognition have many fascinating uses in science & engineering as well as in our daily lives. Algorithms for supervised classification, where one infers a decision boundary from a set of training examples, are at the core of this capability.

This book takes a close view of data complexity & its role in shaping the theories & techniques in different disciplines & asks:

  • What is missing from current classification techniques?
  • When the automatic classifiers are not perfect, is it a deficiency of the algorithms by design, or is it a difficulty intrinsic to the classification task?
  • How do we know whether we have exploited to the fullest extent the knowledge embedded in the training data?

Uunique in its comprehensive coverage & multidisciplinary approach from various methodological & practical perspectives, researchers & practitioners will find this book an insightful reference to learn about current available techniques as well as application areas.

Ho / Basu Data Complexity in Pattern Recognition jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


Theory and Methodology.- Measures of Geometrical Complexity in Classification Problems.- Object Representation, Sample Size, and Data Set Complexity.- Measures of Data and Classifier Complexity and the Training Sample Size.- Linear Separability in Descent Procedures for Linear Classifiers.- Data Complexity, Margin-Based Learning, and Popper’s Philosophy of Inductive Learning.- Data Complexity and Evolutionary Learning.- Classifier Domains of Competence in Data Complexity Space.- Data Complexity Issues in Grammatical Inference.- Applications.- Simple Statistics for Complex Feature Spaces.- Polynomial Time Complexity Graph Distance Computation for Web Content Mining.- Data Complexity in Clustering Analysis of Gene Microarray Expression Profiles.- Complexity of Magnetic Resonance Spectrum Classification.- Data Complexity in Tropical Cyclone Positioning and Classification.- Human-Computer Interaction for Complex Pattern Recognition Problems.- Complex Image Recognition and Web Security.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.