Buch, Englisch, 122 Seiten, Paperback, Format (B × H): 178 mm x 254 mm, Gewicht: 250 g
Buch, Englisch, 122 Seiten, Paperback, Format (B × H): 178 mm x 254 mm, Gewicht: 250 g
Reihe: Lectures in Mathematics. ETH Zürich
ISBN: 978-3-7643-6576-9
Verlag: Springer
Zielgruppe
Research
Fachgebiete
Weitere Infos & Material
1 Introduction: Surfaces with prescribed mean curvature.- 2 From minimal surfaces and CMC surfaces to harmonic maps.- 2.1 Minimal surfaces.- 2.2 Constant mean curvature surfaces.- 3 Variational point of view and Noether’s theorem.- 4 Working with the Hopf differential.- 4.1 Appendix.- 5 The Gauss-Codazzi condition.- 5.1 Appendix.- 6 Elementary twistor theory for harmonic maps.- 6.1 Appendix.- 7 Harmonic maps as an integrable system.- 7.1 Maps into spheres.- 7.2 Generalizations.- 7.3 A new setting: loop groups.- 7.4 Examples.- 8 Construction of finite type solutions.- 8.1 Preliminary: the Iwasawa decomposition (for).- 8.2 Application to loop Lie algebras.- 8.3 The algorithm.- 8.4 Some further properties of finite type solutions.- 9 Constant mean curvature tori are of finite type.- 9.1 The result.- 9.2 Appendix.- 10 Wente tori.- 10.1 CMC surfaces with planar curvature lines.- 10.2 A system of commuting ordinary equations.- 10.3 Recovering a finite type solution.- 10.4 Spectral curves.- 11 Weierstrass type representations.- 11.1 Loop groups decompositions.- 11.2 Solutions in terms of holomorphic data.- 11.3 Meromorphic potentials.- 11.4 Generalizations.