Hida | p-Adic Automorphic Forms on Shimura Varieties | E-Book | sack.de
E-Book

E-Book, Englisch, 390 Seiten, eBook

Reihe: Springer Monographs in Mathematics

Hida p-Adic Automorphic Forms on Shimura Varieties


Erscheinungsjahr 2012
ISBN: 978-1-4684-9390-0
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, 390 Seiten, eBook

Reihe: Springer Monographs in Mathematics

ISBN: 978-1-4684-9390-0
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark



In the early years of the 1980s, while I was visiting the Institute for Ad vanced Study (lAS) at Princeton as a postdoctoral member, I got a fascinating view, studying congruence modulo a prime among elliptic modular forms, that an automorphic L-function of a given algebraic group G should have a canon ical p-adic counterpart of several variables. I immediately decided to find out the reason behind this phenomenon and to develop the theory of ordinary p-adic automorphic forms, allocating 10 to 15 years from that point, putting off the intended arithmetic study of Shimura varieties via L-functions and Eisenstein series (for which I visited lAS). Although it took more than 15 years, we now know (at least conjecturally) the exact number of variables for a given G, and it has been shown that this is a universal phenomenon valid for holomorphic automorphic forms on Shimura varieties and also for more general (nonholomorphic) cohomological automorphic forms on automorphic manifolds (in a markedly different way). When I was asked to give a series of lectures in the Automorphic Semester in the year 2000 at the Emile Borel Center (Centre Emile Borel) at the Poincare Institute in Paris, I chose to give an exposition of the theory of p-adic (ordinary) families of such automorphic forms p-adic analytically de pending on their weights, and this book is the outgrowth of the lectures given there.

Hida p-Adic Automorphic Forms on Shimura Varieties jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


1 Introduction.- 1.1 Automorphic Forms on Classical Groups.- 1.2 p-Adic Interpolation of Automorphic Forms.- 1.3 p-Adic Automorphic L-functions.- 1.4 Galois Representations.- 1.5 Plan of the Book.- 1.6 Notation.- 2 Geometric Reciprocity Laws.- 2.1 Sketch of Classical Reciprocity Laws.- 2.2 Cyclotomic Reciprocity Laws and Adeles.- 2.3 A Generalization of Galois Theory.- 2.4 Algebraic Curves over a Field.- 2.5 Elliptic Curves over a Field.- 2.6 Elliptic Modular Function Field.- 3 Modular Curves.- 3.1 Basics of Elliptic Curves over a Scheme.- 3.2 Moduli of Elliptic Curves and the Igusa Tower.- 3.3 p-Ordinary Elliptic Modular Forms.- 3.4 Elliptic ?-Adic Forms and p-Adic L-functions.- 4 Hilbert Modular Varieties.- 4.1 Hilbert–Blumenthal Moduli.- 4.2 Hilbert Modular Shimura Varieties.- 4.3 Rank of p-Ordinary Cohomology Groups.- 4.4 Appendix: Fundamental Groups.- 5 Generalized Eichler–Shimura Map.- 5.1 Semi-Simplicity of Hecke Algebras.- 5.2 Explicit Symmetric Domains.- 5.3 The Eichler–Shimura Map.- 6 Moduli Schemes.- 6.1 Hilbert Schemes.- 6.2 Quotients by PGL(n).- 6.3 Mumford Moduli.- 6.4 Siegel Modular Variety.- 7 Shimura Varieties.- 7.1 PEL Moduli Varieties.- 7.2 General Shimura Varieties.- 8 Ordinary p-Adic Automorphic Forms.- 8.1 True and False Automorphic Forms.- 8.2 Deformation Theory of Serre and Tate.- 8.3 Vertical Control Theorem.- 8.4 Irreducibility of Igusa Towers.- References.- Symbol Index.- Statement Index.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.