Hiai | Quantum f-Divergences in von Neumann Algebras | Buch | 978-981-334-201-9 | sack.de

Buch, Englisch, 194 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 318 g

Reihe: Mathematical Physics Studies

Hiai

Quantum f-Divergences in von Neumann Algebras

Reversibility of Quantum Operations
1. Auflage 2021
ISBN: 978-981-334-201-9
Verlag: Springer Nature Singapore

Reversibility of Quantum Operations

Buch, Englisch, 194 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 318 g

Reihe: Mathematical Physics Studies

ISBN: 978-981-334-201-9
Verlag: Springer Nature Singapore


Relative entropy has played a significant role in various fields of mathematics and physics as the quantum version of the Kullback–Leibler divergence in classical theory. Many variations of relative entropy have been introduced so far with applications to quantum information and related subjects. Typical examples are three different classes, called the standard, the maximal, and the measured f-divergences, all of which are defined in terms of (operator) convex functions f on (0,8) and have respective mathematical and information theoretical backgrounds. The a-Rényi relative entropy and its new version called the sandwiched a-Rényi relative entropy have also been useful in recent developments of quantum information.
In the first half of this monograph, the different types of quantum f-divergences and the Rényi-type divergences mentioned above in the general von Neumann algebra setting are presented for study. While quantum information has been developing mostly in the finite-dimensional setting, it is widely believed that von Neumann algebras provide the most suitable framework in studying quantum information and related subjects. Thus, the advance of quantum divergences in von Neumann algebras will be beneficial for further development of quantum information. 
Quantum divergences are functions of two states (or more generally, two positive linear functionals) on a quantum system and measure the difference between the two states. They are often utilized to address such problems as state discrimination, error correction, and reversibility of quantum operations. In the second half of the monograph, the reversibility/sufficiency theory for quantum operations (quantum channels) between von Neumann algebras via quantum f-divergences is explained, thus extending and strengthening Petz' previous work.
For the convenience of the reader, an appendix including concise accounts of von Neumann algebras is provided.
Hiai Quantum f-Divergences in von Neumann Algebras jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


1 Introduction.- 2 Standard f -Divergences.- 3 Rényi Divergences and Sandwiched Rényi Divergences.- 4 Maximal f -Divergences.- 5 Measured f -Divergences.- 6 Reversibility and Quantum Divergences.- 7 Reversibility and Measurements.- 8 Preservation of Maximal f -Divergences.- A Preliminaries on von Neumann Algebras.- B Preliminaries on Positive Self-Adjoint Operators.- C Operator Convex Functions on (0,1).- D Operator Connections of Normal Positive Functionals.


The author is currently Professor Emeritus at Tohoku University.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.