Hesketh | BioNanoFluidic MEMS | E-Book | www2.sack.de
E-Book

E-Book, Englisch, 295 Seiten

Reihe: MEMS Reference Shelf

Hesketh BioNanoFluidic MEMS


1. Auflage 2007
ISBN: 978-0-387-46283-7
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, 295 Seiten

Reihe: MEMS Reference Shelf

ISBN: 978-0-387-46283-7
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book explains biosensor development fundamentals. It also initiates awareness in engineers and scientists who would like to develop and implement novel biosensors for agriculture, biomedicine, homeland security, environmental needs, and disease identification. In addition, the book introduces and lays the basic foundation for design, fabrication, testing, and implementation of next generation biosensors through hands-on learning.

Hesketh BioNanoFluidic MEMS jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Preface;6
2;Contents;8
3;Contributors;10
4;Nanotechnology: Retrospect and Prospect;12
4.1;1.1 Introduction;13
4.2;1.2 In Retrospect;13
4.3;1.3 In Prospect;15
4.4;1.4 Conclusion;18
4.5;References;19
5;Synthesis of Oxide Nanostructures;21
5.1;Abbreviation;21
5.2;2.1 Introduction;21
5.3;2.2 Synthesis Methods 2.2.1 VS Growth;22
5.4;2.2.2 VLS Growth;23
5.5;2.2.3 Hydrothermal Synthesis;24
5.6;2.2.4 Composite-Hydroxide-Mediated Technique;31
5.7;2.3 Hydroxides Mediated Synthesis of Complex Oxides;34
5.8;2.3.1 Perovskites;34
5.9;2.3.2 Spinel;37
5.10;2.3.3 Hydroxide;39
5.11;2.3.4 Sulphides;39
5.12;2.3.5 Other Kinds of Nanomaterials;41
5.13;2.4 Discussion;42
5.14;2.5 Summary;44
5.15;References;45
6;Nanolithography;47
6.1;Abbreviations;47
6.2;3.1 Introduction;47
6.3;3.2 Pattern Preparation;50
6.4;3.3 Electron Beam Lithography System Design;50
6.5;3.3.1 Electron Optics;52
6.6;3.3.2 Stage Control;54
6.7;3.3.3 Beam Scanning;54
6.8;3.3.4 Beam Shapes;54
6.9;3.4 Electron Beam Resists;54
6.10;3.5 Electron–Substrate Interaction and Proximity Effect;57
6.11;3.5.1 Critical Dimension Control;61
6.12;3.6 Device Fabrication Examples;63
6.13;3.7 E-beam Lithography Limits;65
6.14;3.8 Other Lithography Techniques 3.8.1 Ion Beam Lithography;68
6.15;3.8.2 X-ray Lithography;68
6.16;3.8.3 Electron Projection Lithography;69
6.17;3.8.4 Dip Pen Nanolithography;69
6.18;3.8.5 Laser Direct Write;70
6.19;3.9 Further Reading;70
6.20;References;70
7;Nano/Microfabrication Methods for Sensors and NEMS/ MEMS;73
7.1;4.1 Introduction;73
7.2;4.2 Physical Vapor Deposition;74
7.3;4.2.1 Vapor Pressure and Deposition Rate;75
7.4;4.2.2 Ultrathin Film Growth;78
7.5;4.2.3 Example 1: Impedance-Based Immunobiosensor;82
7.6;4.3 Atomic Layer Deposition 4.3.1 Introduction;83
7.7;4.3.2 Semiconductors;88
7.8;4.3.3 Dielectric Films;88
7.9;4.3.4 Other Metal Oxide and Nitride Films;95
7.10;4.3.5 Metals;97
7.11;4.3.6 MEMS Applications of ALD;99
7.12;4.3.7 Integration with Porous Membranes and Templates;102
7.13;4.4 Focused Ion Beam Processing 4.4.1 Introduction;105
7.14;4.4.2 Applications of FIB;109
7.15;4.4.3 FIB CVD;114
7.16;4.5 Electroplating of Nanostructures;120
7.17;4.5.1 Electrochemical Cells for Electroplating;120
7.18;4.5.2 Templates;122
7.19;4.5.3 Ferromagnetic Nanowire Materials;124
7.20;4.5.4 Noble Metal Nanowires;127
7.21;4.5.5 Metal Oxide Nanowires;129
7.22;4.6 The Future;131
7.23;References;132
7.24;List of Symbols and Abbreviations;139
8;Micro- and Nanomanufacturing via Molding;141
8.1;5.1 Introduction;141
8.2;5.2 Review of Molding Processes;142
8.3;5.3 Applications of Micro- and Nanomolding;143
8.4;5.3.1 Functional Micro- and Nanomolded Applications;144
8.5;5.3.2 Lithographic Patterning via Micro- and Nanomolding;145
8.6;5.4 Polymer Flow During Molding;146
8.7;5.4.1 Local Cavity Flow;147
8.8;5.4.2 Nonuniform Long Range Polymer Transport;152
8.9;5.5 Design Rules for New Molding Processes;153
8.10;5.6 Summary;157
8.11;References;157
8.12;Abbreviations;161
9;Temperature Measurement of Microdevices using Thermoreflectance and Raman Thermometry;162
9.1;6.1 Introduction;162
9.2;6.2 Temperature Measurement of Microdevices by Means of Thermoreflectance 6.2.1 Physical Basis of the Thermoreflectance Technique;164
9.3;6.2.2 Experimental Methodology;166
9.4;6.2.3 Calibration of the Thermoreflectance Coefficient;167
9.5;6.2.4 Applications of Thermoreflectance in Temperature Measurement of Microdevices;168
9.6;6.3 Temperature Measurement of Microdevices by Means of Raman Spectroscopy 6.3.1 Physical Basis of the Raman Technique;170
9.7;6.3.2 Stokes/Anti-Stokes Intensity Ratio as a Measurement of Temperature;174
9.8;6.3.3 Stokes Shift as a Measurement of Temperature;174
9.9;6.3.4 Stokes Linewidth as a Measurement of Temperature;175
9.10;6.3.5 Calibration and Experimental Procedure;176
9.11;6.3.6 Applications of Raman Spectroscopy in Temperature Measurement of Microdevices;178
9.12;6.4 Summary and Conclusions;181
9.13;References;181
10;Stereolithography and Rapid Prototyping;184
10.1;7.1 Rapid Prototyping;184
10.2;7.2 Stereolithography 7.2.1 Technology Description;185
10.3;7.2.2 Materials;187
10.4;7.2.3 Modeling;190
10.5;7.3 Micro-Fluidics and Micro-Sensor Examples;192
10.6;7.3.1 Experiments;192
10.7;7.3.2 Results;195
10.8;7.4 Micro-Stereolithography 7.4.1 Introduction;197
10.9;7.4.2 Compensation Zone Modeling;199
10.10;7.4.3 Examples;201
10.11;7.5 PDMS Molding with SL Molds;201
10.12;7.5.1 Fluid Flow Manifold for a Microvalve;202
10.13;7.5.2 Bioassay on a Chip;203
10.14;References;203
10.15;Symbols and Abbreviations;205
11;Case Studies in Chemical Sensor Development;206
11.1;8.1 Introduction;206
11.2;8.2 Case Studies 8.2.1 Sensors and Supporting Hardware Need to be Tailored for the Application: Case Study of Silicon Based Hydrogen Sensor Development;207
11.3;8.2.2 Sensor Structure Determines the Technical Challenges Part 1, Importance of Surface Interface Control: Case Study of SiC Based Hydrogen and Hydrocarbon Sensors;216
11.4;8.2.3 Sensor Structure Determines Technical Challenges Part 2, Microfabrication is Not Just Making Something Smaller: Case Study of Carbon Dioxide Sensor Development;222
11.5;8.2.4 One Sensor or Even One Type of Sensor Often will Not Solve the Problem, The Need for Sensor Arrays: Case Study of Multifunctional Fire Detection Sensor Array;227
11.6;8.2.5 Supporting Technologies Often Determine Success in a Sensor Application: Case Study of Smart Leak Detection Sensor Array;231
11.7;8.3 Summary and Sensor Technology Application Approaches;234
11.8;References;237
11.9;Glossary;240
12;Engineered Nanopores;241
12.1;9.1 Nanopores in Biology and Technology;241
12.2;9.2 Nanopores from Soft Matter;242
12.3;9.3 Solid-State Nanopore Devices;245
12.4;9.4 Nanopore Simulation and Control Techniques;249
12.5;9.5 Prospects and Challenges in END Science and Technology;253
12.6;References;255
13;Engineering Biomaterial Interfaces Through Micro and Nano- Patterning;259
13.1;10.1 Introduction;259
13.2;10.2 Techniques for Surface Patterning Cell Substrates;260
13.3;10.2.1 Topographical Patterning Methods;261
13.4;10.2.2 Molding Techniques;263
13.5;10.2.3 Chemical Patterning Methods;265
13.6;10.2.4 Traditional Cleanroom Techniques;265
13.7;10.2.5 Non-traditional Techniques;266
13.8;10.2.6 Combined Topographical and Chemical Patterning;270
13.9;10.3 Cellular Response to Surface Patterns 10.3.1 Cellular Response to Topography;271
13.10;10.3.2 Cellular Response to Chemical Patterns;274
13.11;10.3.3 Cellular Response to Combined Chemistry and Topography;277
13.12;10.4 Summary and Conclusions;279
13.13;References;280
14;Biosensors Micro and Nano Integration;286
14.1;11.1 Introduction;286
14.2;11.2 Micro and Nanocomposite Bio Compatible Interconnect;287
14.3;11.2.1 Flip Chip Process;287
14.4;11.2.2 MEMS Packaging;291
14.5;11.2.3 Material Trends in MEMS Packaging;291
14.6;11.2.4 Challenge in Integration Technologies;291
14.7;11.3 Temperature Dependents of Integration for Bio- MEMS Process;292
14.8;11.4 Flip Chip Stud Bump Assembly;294
14.9;11.4.1 Pressure Bonding Technique;294
14.10;11.5 Next Generation Nano Composite Interconnect Technique for Bio MEMS Systems;295
14.11;11.6 Examples Bio-Medical Packaging Applications;295
14.12;References;296



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.