Henrot Extremum Problems for Eigenvalues of Elliptic Operators
2006
ISBN: 978-3-7643-7706-9
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 202 Seiten, eBook
Reihe: Frontiers in Mathematics
ISBN: 978-3-7643-7706-9
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
This book focuses on extremal problems. For instance, it seeks a domain which minimizes or maximizes a given eigenvalue of the Laplace operator with various boundary conditions and various geometric constraints. Also considered is the case of functions of eigenvalues. The text probes similar questions for other elliptic operators, such as Schrodinger, and explores optimal composites and optimal insulation problems in terms of eigenvalues.
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
Eigenvalues of elliptic operators.- Tools.- The first eigenvalue of the Laplacian-Dirichlet.- The second eigenvalue of the Laplacian-Dirichlet.- The other Dirichlet eigenvalues.- Functions of Dirichlet eigenvalues.- Other boundary conditions for the Laplacian.- Eigenvalues of Schrödinger operators.- Non-homogeneous strings and membranes.- Optimal conductivity.- The bi-Laplacian operator.




