Henini | Dilute Nitride Semiconductors | E-Book | sack.de
E-Book

E-Book, Englisch, 640 Seiten

Henini Dilute Nitride Semiconductors

E-Book, Englisch, 640 Seiten

ISBN: 978-0-08-045599-0
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



* This book contains full account of the advances made in the dilute nitrides, providing an excellent starting point for workers entering the field.* It gives the reader easier access and better evaluation of future trends, Conveying important results and current ideas* Includes a generous list of references at the end of each chapter, providing a useful reference to the III-V-N based semiconductors research community.The high speed lasers operating at wavelength of 1.3 µm and 1.55 µm are very important light sources in optical communications since the optical fiber used as a transport media of light has dispersion and attenuation minima, respectively, at these wavelengths. These long wavelengths are exclusively made of InP-based material InGaAsP/InP. However, there are several problems with this material system. Therefore, there has been considerable effort for many years to fabricate long wavelength laser structures on other substrates, especially GaAs. The manufacturing costs of GaAs-based components are lower and the processing techniques are well developed. In 1996 a novel quaternary material GaInAsN was proposed which could avoid several problems with the existing technology of long wavelength lasers.In this book, several leaders in the field of dilute nitrides will cover the growth and processing, experimental characterization, theoretical understanding, and device design and fabrication of this recently developed class of semiconductor alloys. They will review their current status of research and development. Dilute Nitrides (III-N-V) Semiconductors: Physics and Technology organises the most current available data, providing a ready source of information on a wide range of topics, making this book essential reading for all post graduate students, researchers and practitioners in the fields of Semiconductors and Optoelectronics
* This book contains full account of the advances made in the dilute nitrides, providing an excellent starting point for workers entering the field.
* It gives the reader easier access and better evaluation of future trends, Conveying important results and current ideas
* Includes a generous list of references at the end of each chapter, providing a useful reference to the III-V-N based semiconductors research community.

Dr M. Henini has over 20 years' experience of Molecular Beam Epitaxy (MBE) growth and has published >700 papers. He has particular interests in the MBE growth and physics of self-assembled quantum dots using electronic, optical and structural techniques. Leaders in the field of self-organisation of nanostructures will give an account on the formation, properties, and self-organization of semiconductor nanostructures.
Henini Dilute Nitride Semiconductors jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Cover;1
2;Frontmatter;2
2.1;Half Title Page;2
2.2;Copyright;3
2.3;Title Page;4
2.4;Copyright;5
2.5;Preface;6
2.6;Contents;8
3;1. MBE Growth and Characterization of Long Wavelength Dilute Nitride III–V Alloys;19
3.1;1.1. INTRODUCTION;19
3.2;1.2. MBE GROWTH OF DILUTE III–V NITRIDES;21
3.3;1.3. DILUTE NITRIDE CHARACTERIZATION;34
3.4;1.4. ENERGY BAND AND CARRIER TRANSPORT PROPERTIES;84
3.5;1.5. ANNEALING AND N–In NEAREST NEIGHBOR EFFECTS;86
3.6;1.6. SUMMARY;98
3.7;ACKNOWLEDGEMENTS;99
3.8;REFERENCES;99
4;2. Epitaxial Growth of Dilute Nitrides by Metal-Organic Vapour Phase Epitaxy;111
4.1;2.1. INTRODUCTION;111
4.2;2.2. EPITAXIAL GROWTH OF GaInAsN-BASED STRUCTURES;112
4.3;2.3. LONG WAVELENGTH GaAs-BASED LASER PERFORMANCES;123
4.4;2.4. CONCLUSION;131
4.5;ACKNOWLEDGEMENTS;132
4.6;REFERENCES;132
5;3. The Chemical Beam Epitaxy of Dilute Nitride Alloy Semiconductors;137
5.1;3.1. INTRODUCTION TO DILUTE NITRIDE SEMICONDUCTORS;137
5.2;3.2. THE CHEMICAL BEAM EPITAXIAL/METALORGANIC MOLECULAR BEAM EPITAXIAL (CBE/MOMBE) GROWTH PROCESS;138
5.3;3.3. CBE OF DILUTE NITRIDE SEMICONDUCTORS;139
5.4;3.4. FUNDAMENTAL STUDIES OF GaNxAs(1-x) BAND STRUCTURE;140
5.5;3.5. THE COMPOSITIONS AND PROPERTIES OF DILUTE NITRIDES GROWN BY CBE;141
5.6;3.6. CBE-GROWN DILUTE NITRIDE DEVICES;145
5.7;3.7. THE POTENTIAL FOR PRODUCTION CBE OF DILUTE NITRIDES;150
5.8;3.8. CONCLUSIONS;151
5.9;ACKNOWLEDGEMENTS;151
5.10;REFERENCES;151
6;4. MOMBE Growth and Characterization of III–V-N Compounds and Application to InAs Quantum Dots;155
6.1;ABSTRACT;155
6.2;4.1. INTRODUCTION;155
6.3;4.2. MOMBE GROWTH AND CHARACTERIZATION OF GaAsN;156
6.4;4.3. RELATION OF In AND N INCORPORATIONS IN THE GROWTH OF GaInNAs;163
6.5;4.4. GROWTH AND CHARACTERIZATION OF GaAsNSe NEW ALLOY;166
6.6;4.5. APPLICATION OF GaAsN TO InAs QUANTUM DOTS;167
6.7;4.6. SUMMARY;172
6.8;ACKNOWLEDGEMENTS;172
6.9;REFERENCES;172
7;5. Recent Progress in Dilute Nitride Quantum Dots;175
7.1;5.1. SELF-ORGANIZED QUANTUM DOTS;175
7.2;5.2. DILUTE NITRIDE QUANTUM DOTS;177
7.3;5.3. RECENT EXPERIMENTAL PROGRESS IN GaInNAs QDs;179
7.4;5.4. OTHER KINDS OF DILUTE NITRIDE QDs;191
7.5;5.5. SUMMARY AND FUTURE CHALLENGES IN DILUTE NITRIDE QDs;191
7.6;ACKNOWLEDGEMENTS;192
7.7;REFERENCES;192
8;6. Physics of Isoelectronic Dopants in GaAs;197
8.1;6.1. NITROGEN ISOELECTRONIC IMPURITIES;198
8.2;6.2. THE FAILURE OF THE VIRTUAL CRYSTAL APPROXIMATION;200
8.3;6.3. PREVALENT THEORETICAL MODELS ON DILUTE NITRIDES;204
8.4;6.4. ELECTROREFLECTANCE STUDY OF GaAsN;206
8.5;6.5. RESONANT RAMAN SCATTERING STUDY OF CONDUCTION BAND STATES;225
8.6;6.6. COMPATIBILITY WITH OTHER EXPERIMENTAL RESULTS;229
8.7;6.7. A COMPLEMENTARY ALLOY: GaAsBi;230
8.8;6.8. SUMMARY;233
8.9;6.9. CONCLUSION;235
8.10;REFERENCES;236
9;7. Measurement of Carrier Localization Degree, Electron Effective Mass, and Exciton Size in InxGa1–xAs1–yNy Alloys;241
9.1;ABSTRACT;241
9.2;7.1. INTRODUCTION;241
9.3;7.2. EXPERIMENTAL;243
9.4;7.3. SINGLE CARRIER LOCALIZATION IN InxGa1–xAs1–yNy;243
9.5;7.4. MEASUREMENT OF THE ELECTRON EFFECTIVE MASS AND EXCITON WAVE FUNCTION SIZE;248
9.6;7.5. CONCLUSIONS;265
9.7;ACKNOWLEDGEMENTS;266
9.8;REFERENCES;266
10;8. Probing the “Unusual” Band Structure of Dilute Ga(AsN) Quantum Wells by Magneto-Tunnelling Spectroscopy and Other Techniques;271
10.1;8.1. INTRODUCTION;271
10.2;8.2. RESONANT TUNNELLING DIODES BASED ON DILUTE NITRIDES;273
10.3;8.3. MAGNETO-TUNNELLING SPECTROSCOPY TO PROBE THE CONDUCTION BAND STRUCTURE OF DILUTE NITRIDES;277
10.4;8.4. ELECTRONIC PROPERTIES: FROM THE VERY DILUTE REGIME (~0.1%) TO THE DILUTE REGIME;282
10.5;8.5. CONDUCTION IN DILUTE NITRIDES AND FUTURE PROSPECTS;287
10.6;8.6. SUMMARY AND CONCLUSIONS;292
10.7;ACKNOWLEDGEMENTS;293
10.8;REFERENCES;293
11;9. Photo- and Electro-reflectance of III–V-N Compounds and Low Dimensional Structures;297
11.1;9.1. PRINCIPLES OF ELECTROMODULATION IN ELECTRO- AND PHOTO-REFLECTANCE SPECTROSCOPY;298
11.2;9.2. BAND STRUCTURE OF (Ga,In)(As,Sb,N) BULK-LIKE LAYERS;303
11.3;9.3. (Ga,In)(As,Sb,N)-BASED QUANTUM WELL STRUCTURES;311
11.4;9.4. THE INFLUENCE OF POST-GROWN ANNEALING ON GaInNAs STRUCTURES;327
11.5;9.5. PHOTOREFLECTANCE INVESTIGATION OF THE EXCITON BINDING ENERGY;334
11.6;9.6. MANIFESTATION OF THE CARRIER LOCALIZATION EFFECT IN PHOTOREFLECTANCE SPECTROSCOPY;337
11.7;REFERENCES;339
12;10. Band Anticrossing and Related Electronic Structure in III-N-V Alloys;343
12.1;10.1. INTRODUCTION;343
12.2;10.2. BAND ANTICROSSING MODEL;345
12.3;10.3. EXPERIMENTAL EVIDENCE OF BAND SPLITTING AND ANTICROSSING CHARACTERISTICS;350
12.4;10.4. NOVEL ELECTRONIC AND TRANSPORT PROPERTIES OF III-N-V ALLOYS;361
12.5;10.5. CONCLUSIONS;371
12.6;ACKNOWLEDGEMENTS;372
12.7;REFERENCES;372
13;11. A Tight-binding Based Analysis of the Band Anti-Crossing Model and Its Application in Ga(In)NAs Alloys;379
13.1;ABSTRACT;379
13.2;11.1. INTRODUCTION;380
13.3;11.2. NITROGEN RESONANT STATES IN ORDERED GaNxAs1–x STRUCTURES;382
13.4;11.3. ANALYTICAL MODEL FOR QUANTUM WELL CONFINED STATE ENERGIES AND DISPERSION;386
13.5;11.4. INFLUENCE OF DISORDER ON NITROGEN RESONANT STATES, E– AND E+ IN GaNxAs1–x;392
13.6;11.5. CONDUCTION BAND STRUCTURE AND EFFECTIVE MASS IN DISORDERED GaNxAs1–x;396
13.7;11.6. ALLOY SCATTERING AND MOBILITY IN DILUTE NITRIDE ALLOYS;403
13.8;11.7. CONCLUSIONS;405
13.9;ACKNOWLEDGEMENTS;406
13.10;REFERENCES;406
14;12. Electronic Structure Evolution of Dilute III–V Nitride Alloys;411
14.1;12.1. INTRODUCTION;411
14.2;12.2. PHENOMENOLOGY OF DILUTE III–V NITRIDES;411
14.3;12.3. EMPIRICAL PSEUDOPOTENTIAL METHODOLOGY;413
14.4;12.4. ELECTRONIC STRUCTURE EVOLUTION OF DILUTE NITRIDES;415
14.5;12.5. SUMMARY OF ELECTRONIC STRUCTURE EVOLUTION;423
14.6;12.6. PHENOMENOLOGY OF DILUTE NITRIDE QUATERNARIES;424
14.7;12.7. FUTURE CHALLENGES OF NEW NITRIDE MATERIALS;426
14.8;12.8. CONCLUSIONS;427
14.9;ACKNOWLEDGEMENTS;427
14.10;REFERENCES;427
15;13. Theory of Nitrogen–Hydrogen Complexes in N-containing III–V Alloys;433
15.1;13.1. INTRODUCTION;433
15.2;13.2. THEORETICAL METHODS;436
15.3;13.3. N–H COMPLEXES IN GaAsN ALLOYS;438
15.4;13.4. INTRINSIC N AND H IMPURITIES IN GaP AND GaAs;462
15.5;13.5. N–H COMPLEXES IN InGaAsN;464
15.6;13.6. N–H COMPLEXES IN GaPN;464
15.7;13.7. CONCLUSIONS;465
15.8;REFERENCES;466
16;14. Dislocation-free III–V-N Alloy Layers on Si Substrates and Their Device Applications;469
16.1;ABSTRACT;469
16.2;14.1. INTRODUCTION;469
16.3;14.2. DISLOCATION GENERATION MECHANISMS IN LATTICE-MISMATCHED HETEROEPITAXY;470
16.4;14.3. LATTICE-MATCHED HETEROEPITAXY OF III–V-N ALLOYS ON III–V COMPOUND SEMICONDUCTORS;472
16.5;14.4. GROWTH OF DISLOCATION-FREE III–V-N ALLOY LAYERS ON Si SUBSTRATES;474
16.6;14.5. DEVICE APPLICATIONS;479
16.7;14.6. SUMMARY;485
16.8;ACKNOWLEDGEMENTS;486
16.9;REFERENCES;486
17;15. GaNAsSb Alloy and Its Potential for Device Applications;489
17.1;ABSTRACT;489
17.2;15.1. INTRODUCTION;489
17.3;15.2. MBE OF THE GaNAsSb ALLOY;490
17.4;15.3. BANDS;493
17.5;15.4. ANNEALING EFFECT;496
17.6;15.5. QUINARY ALLOY;500
17.7;15.6. LONG-WAVELENGTH GaAs-BASED LASER;503
17.8;15.7. HBT;506
17.9;15.8. CONCLUSIONS;509
17.10;ACKNOWLEDGEMENTS;510
17.11;REFERENCES;510
18;16. A Comparative Look at 1.3 µm InGaAsN-based VCSELs for Fiber-optical Communication Systems;513
18.1;ABSTRACT;513
18.2;16.1. INTRODUCTION: 0.85 µm VERSUS 1.3 µm VCSELs;513
18.3;16.2. APPROACHES TO ACHIEVE 1.3 µm VCSELs;515
18.4;16.3. 1.3 µm VCSELs BASED ON InGaAsN;517
18.5;16.4. OUTLOOK;520
18.6;16.5. CONCLUSION;521
18.7;ACKNOWLEDGEMENTS;521
18.8;REFERENCES;521
19;17. Long-wavelength Dilute Nitride–Antimonide Lasers;525
19.1;17.1. INTRODUCTION;525
19.2;17.2. EPITAXIAL GROWTH SYSTEMS: MOVPE AND MBE;529
19.3;17.3. ION DAMAGE AND ANNEALING BEHAVIOR;533
19.4;17.4. GaInNAsSb EDGE-EMITTING LASERS;535
19.5;17.5. SPONTANEOUS EMISSION STUDIES;550
19.6;17.6. GaInNAsSb VCSELs;557
19.7;17.7. HIGH POWER LASERS BASED ON GaInNAs(Sb);565
19.8;17.8. RELATIVE INTENSITY NOISE;570
19.9;17.9. GaInNAsSb ELECTROABSORPTION MODULATORS AND SATURABLE ABSORBERS;576
19.10;17.10. LASER RELIABILITY;581
19.11;17.11. SUMMARY;586
19.12;ACKNOWLEDGEMENTS;587
19.13;REFERENCES;587
20;18. Application of Dilute Nitride Materials to Heterojunction Bipolar Transistors;597
20.1;ABSTRACT;597
20.2;18.1. INTRODUCTION;597
20.3;18.2. DESIGN CONSIDERATIONS FOR GaInNAs BASE HBTs;603
20.4;18.3. MATERIAL GROWTH AND DEVICE PROCESSING;609
20.5;18.4. GaInNAs HBT RESULTS;613
20.6;18.5. CIRCUIT APPLICATIONS FOR GaInNAs HBTs;622
20.7;18.6. FUTURE OUTLOOK;624
20.8;ACKNOWLEDGEMENTS;626
20.9;REFERENCES;626
21;Index;631


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.