E-Book, Englisch, 640 Seiten
ISBN: 978-0-08-045599-0
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
* This book contains full account of the advances made in the dilute nitrides, providing an excellent starting point for workers entering the field.
* It gives the reader easier access and better evaluation of future trends, Conveying important results and current ideas
* Includes a generous list of references at the end of each chapter, providing a useful reference to the III-V-N based semiconductors research community.
Dr M. Henini has over 20 years' experience of Molecular Beam Epitaxy (MBE) growth and has published >700 papers. He has particular interests in the MBE growth and physics of self-assembled quantum dots using electronic, optical and structural techniques. Leaders in the field of self-organisation of nanostructures will give an account on the formation, properties, and self-organization of semiconductor nanostructures.
Autoren/Hrsg.
Weitere Infos & Material
1;Cover;1
2;Frontmatter;2
2.1;Half Title Page;2
2.2;Copyright;3
2.3;Title Page;4
2.4;Copyright;5
2.5;Preface;6
2.6;Contents;8
3;1. MBE Growth and Characterization of Long Wavelength Dilute Nitride III–V Alloys;19
3.1;1.1. INTRODUCTION;19
3.2;1.2. MBE GROWTH OF DILUTE III–V NITRIDES;21
3.3;1.3. DILUTE NITRIDE CHARACTERIZATION;34
3.4;1.4. ENERGY BAND AND CARRIER TRANSPORT PROPERTIES;84
3.5;1.5. ANNEALING AND N–In NEAREST NEIGHBOR EFFECTS;86
3.6;1.6. SUMMARY;98
3.7;ACKNOWLEDGEMENTS;99
3.8;REFERENCES;99
4;2. Epitaxial Growth of Dilute Nitrides by Metal-Organic Vapour Phase Epitaxy;111
4.1;2.1. INTRODUCTION;111
4.2;2.2. EPITAXIAL GROWTH OF GaInAsN-BASED STRUCTURES;112
4.3;2.3. LONG WAVELENGTH GaAs-BASED LASER PERFORMANCES;123
4.4;2.4. CONCLUSION;131
4.5;ACKNOWLEDGEMENTS;132
4.6;REFERENCES;132
5;3. The Chemical Beam Epitaxy of Dilute Nitride Alloy Semiconductors;137
5.1;3.1. INTRODUCTION TO DILUTE NITRIDE SEMICONDUCTORS;137
5.2;3.2. THE CHEMICAL BEAM EPITAXIAL/METALORGANIC MOLECULAR BEAM EPITAXIAL (CBE/MOMBE) GROWTH PROCESS;138
5.3;3.3. CBE OF DILUTE NITRIDE SEMICONDUCTORS;139
5.4;3.4. FUNDAMENTAL STUDIES OF GaNxAs(1-x) BAND STRUCTURE;140
5.5;3.5. THE COMPOSITIONS AND PROPERTIES OF DILUTE NITRIDES GROWN BY CBE;141
5.6;3.6. CBE-GROWN DILUTE NITRIDE DEVICES;145
5.7;3.7. THE POTENTIAL FOR PRODUCTION CBE OF DILUTE NITRIDES;150
5.8;3.8. CONCLUSIONS;151
5.9;ACKNOWLEDGEMENTS;151
5.10;REFERENCES;151
6;4. MOMBE Growth and Characterization of III–V-N Compounds and Application to InAs Quantum Dots;155
6.1;ABSTRACT;155
6.2;4.1. INTRODUCTION;155
6.3;4.2. MOMBE GROWTH AND CHARACTERIZATION OF GaAsN;156
6.4;4.3. RELATION OF In AND N INCORPORATIONS IN THE GROWTH OF GaInNAs;163
6.5;4.4. GROWTH AND CHARACTERIZATION OF GaAsNSe NEW ALLOY;166
6.6;4.5. APPLICATION OF GaAsN TO InAs QUANTUM DOTS;167
6.7;4.6. SUMMARY;172
6.8;ACKNOWLEDGEMENTS;172
6.9;REFERENCES;172
7;5. Recent Progress in Dilute Nitride Quantum Dots;175
7.1;5.1. SELF-ORGANIZED QUANTUM DOTS;175
7.2;5.2. DILUTE NITRIDE QUANTUM DOTS;177
7.3;5.3. RECENT EXPERIMENTAL PROGRESS IN GaInNAs QDs;179
7.4;5.4. OTHER KINDS OF DILUTE NITRIDE QDs;191
7.5;5.5. SUMMARY AND FUTURE CHALLENGES IN DILUTE NITRIDE QDs;191
7.6;ACKNOWLEDGEMENTS;192
7.7;REFERENCES;192
8;6. Physics of Isoelectronic Dopants in GaAs;197
8.1;6.1. NITROGEN ISOELECTRONIC IMPURITIES;198
8.2;6.2. THE FAILURE OF THE VIRTUAL CRYSTAL APPROXIMATION;200
8.3;6.3. PREVALENT THEORETICAL MODELS ON DILUTE NITRIDES;204
8.4;6.4. ELECTROREFLECTANCE STUDY OF GaAsN;206
8.5;6.5. RESONANT RAMAN SCATTERING STUDY OF CONDUCTION BAND STATES;225
8.6;6.6. COMPATIBILITY WITH OTHER EXPERIMENTAL RESULTS;229
8.7;6.7. A COMPLEMENTARY ALLOY: GaAsBi;230
8.8;6.8. SUMMARY;233
8.9;6.9. CONCLUSION;235
8.10;REFERENCES;236
9;7. Measurement of Carrier Localization Degree, Electron Effective Mass, and Exciton Size in InxGa1–xAs1–yNy Alloys;241
9.1;ABSTRACT;241
9.2;7.1. INTRODUCTION;241
9.3;7.2. EXPERIMENTAL;243
9.4;7.3. SINGLE CARRIER LOCALIZATION IN InxGa1–xAs1–yNy;243
9.5;7.4. MEASUREMENT OF THE ELECTRON EFFECTIVE MASS AND EXCITON WAVE FUNCTION SIZE;248
9.6;7.5. CONCLUSIONS;265
9.7;ACKNOWLEDGEMENTS;266
9.8;REFERENCES;266
10;8. Probing the “Unusual” Band Structure of Dilute Ga(AsN) Quantum Wells by Magneto-Tunnelling Spectroscopy and Other Techniques;271
10.1;8.1. INTRODUCTION;271
10.2;8.2. RESONANT TUNNELLING DIODES BASED ON DILUTE NITRIDES;273
10.3;8.3. MAGNETO-TUNNELLING SPECTROSCOPY TO PROBE THE CONDUCTION BAND STRUCTURE OF DILUTE NITRIDES;277
10.4;8.4. ELECTRONIC PROPERTIES: FROM THE VERY DILUTE REGIME (~0.1%) TO THE DILUTE REGIME;282
10.5;8.5. CONDUCTION IN DILUTE NITRIDES AND FUTURE PROSPECTS;287
10.6;8.6. SUMMARY AND CONCLUSIONS;292
10.7;ACKNOWLEDGEMENTS;293
10.8;REFERENCES;293
11;9. Photo- and Electro-reflectance of III–V-N Compounds and Low Dimensional Structures;297
11.1;9.1. PRINCIPLES OF ELECTROMODULATION IN ELECTRO- AND PHOTO-REFLECTANCE SPECTROSCOPY;298
11.2;9.2. BAND STRUCTURE OF (Ga,In)(As,Sb,N) BULK-LIKE LAYERS;303
11.3;9.3. (Ga,In)(As,Sb,N)-BASED QUANTUM WELL STRUCTURES;311
11.4;9.4. THE INFLUENCE OF POST-GROWN ANNEALING ON GaInNAs STRUCTURES;327
11.5;9.5. PHOTOREFLECTANCE INVESTIGATION OF THE EXCITON BINDING ENERGY;334
11.6;9.6. MANIFESTATION OF THE CARRIER LOCALIZATION EFFECT IN PHOTOREFLECTANCE SPECTROSCOPY;337
11.7;REFERENCES;339
12;10. Band Anticrossing and Related Electronic Structure in III-N-V Alloys;343
12.1;10.1. INTRODUCTION;343
12.2;10.2. BAND ANTICROSSING MODEL;345
12.3;10.3. EXPERIMENTAL EVIDENCE OF BAND SPLITTING AND ANTICROSSING CHARACTERISTICS;350
12.4;10.4. NOVEL ELECTRONIC AND TRANSPORT PROPERTIES OF III-N-V ALLOYS;361
12.5;10.5. CONCLUSIONS;371
12.6;ACKNOWLEDGEMENTS;372
12.7;REFERENCES;372
13;11. A Tight-binding Based Analysis of the Band Anti-Crossing Model and Its Application in Ga(In)NAs Alloys;379
13.1;ABSTRACT;379
13.2;11.1. INTRODUCTION;380
13.3;11.2. NITROGEN RESONANT STATES IN ORDERED GaNxAs1–x STRUCTURES;382
13.4;11.3. ANALYTICAL MODEL FOR QUANTUM WELL CONFINED STATE ENERGIES AND DISPERSION;386
13.5;11.4. INFLUENCE OF DISORDER ON NITROGEN RESONANT STATES, E– AND E+ IN GaNxAs1–x;392
13.6;11.5. CONDUCTION BAND STRUCTURE AND EFFECTIVE MASS IN DISORDERED GaNxAs1–x;396
13.7;11.6. ALLOY SCATTERING AND MOBILITY IN DILUTE NITRIDE ALLOYS;403
13.8;11.7. CONCLUSIONS;405
13.9;ACKNOWLEDGEMENTS;406
13.10;REFERENCES;406
14;12. Electronic Structure Evolution of Dilute III–V Nitride Alloys;411
14.1;12.1. INTRODUCTION;411
14.2;12.2. PHENOMENOLOGY OF DILUTE III–V NITRIDES;411
14.3;12.3. EMPIRICAL PSEUDOPOTENTIAL METHODOLOGY;413
14.4;12.4. ELECTRONIC STRUCTURE EVOLUTION OF DILUTE NITRIDES;415
14.5;12.5. SUMMARY OF ELECTRONIC STRUCTURE EVOLUTION;423
14.6;12.6. PHENOMENOLOGY OF DILUTE NITRIDE QUATERNARIES;424
14.7;12.7. FUTURE CHALLENGES OF NEW NITRIDE MATERIALS;426
14.8;12.8. CONCLUSIONS;427
14.9;ACKNOWLEDGEMENTS;427
14.10;REFERENCES;427
15;13. Theory of Nitrogen–Hydrogen Complexes in N-containing III–V Alloys;433
15.1;13.1. INTRODUCTION;433
15.2;13.2. THEORETICAL METHODS;436
15.3;13.3. N–H COMPLEXES IN GaAsN ALLOYS;438
15.4;13.4. INTRINSIC N AND H IMPURITIES IN GaP AND GaAs;462
15.5;13.5. N–H COMPLEXES IN InGaAsN;464
15.6;13.6. N–H COMPLEXES IN GaPN;464
15.7;13.7. CONCLUSIONS;465
15.8;REFERENCES;466
16;14. Dislocation-free III–V-N Alloy Layers on Si Substrates and Their Device Applications;469
16.1;ABSTRACT;469
16.2;14.1. INTRODUCTION;469
16.3;14.2. DISLOCATION GENERATION MECHANISMS IN LATTICE-MISMATCHED HETEROEPITAXY;470
16.4;14.3. LATTICE-MATCHED HETEROEPITAXY OF III–V-N ALLOYS ON III–V COMPOUND SEMICONDUCTORS;472
16.5;14.4. GROWTH OF DISLOCATION-FREE III–V-N ALLOY LAYERS ON Si SUBSTRATES;474
16.6;14.5. DEVICE APPLICATIONS;479
16.7;14.6. SUMMARY;485
16.8;ACKNOWLEDGEMENTS;486
16.9;REFERENCES;486
17;15. GaNAsSb Alloy and Its Potential for Device Applications;489
17.1;ABSTRACT;489
17.2;15.1. INTRODUCTION;489
17.3;15.2. MBE OF THE GaNAsSb ALLOY;490
17.4;15.3. BANDS;493
17.5;15.4. ANNEALING EFFECT;496
17.6;15.5. QUINARY ALLOY;500
17.7;15.6. LONG-WAVELENGTH GaAs-BASED LASER;503
17.8;15.7. HBT;506
17.9;15.8. CONCLUSIONS;509
17.10;ACKNOWLEDGEMENTS;510
17.11;REFERENCES;510
18;16. A Comparative Look at 1.3 µm InGaAsN-based VCSELs for Fiber-optical Communication Systems;513
18.1;ABSTRACT;513
18.2;16.1. INTRODUCTION: 0.85 µm VERSUS 1.3 µm VCSELs;513
18.3;16.2. APPROACHES TO ACHIEVE 1.3 µm VCSELs;515
18.4;16.3. 1.3 µm VCSELs BASED ON InGaAsN;517
18.5;16.4. OUTLOOK;520
18.6;16.5. CONCLUSION;521
18.7;ACKNOWLEDGEMENTS;521
18.8;REFERENCES;521
19;17. Long-wavelength Dilute Nitride–Antimonide Lasers;525
19.1;17.1. INTRODUCTION;525
19.2;17.2. EPITAXIAL GROWTH SYSTEMS: MOVPE AND MBE;529
19.3;17.3. ION DAMAGE AND ANNEALING BEHAVIOR;533
19.4;17.4. GaInNAsSb EDGE-EMITTING LASERS;535
19.5;17.5. SPONTANEOUS EMISSION STUDIES;550
19.6;17.6. GaInNAsSb VCSELs;557
19.7;17.7. HIGH POWER LASERS BASED ON GaInNAs(Sb);565
19.8;17.8. RELATIVE INTENSITY NOISE;570
19.9;17.9. GaInNAsSb ELECTROABSORPTION MODULATORS AND SATURABLE ABSORBERS;576
19.10;17.10. LASER RELIABILITY;581
19.11;17.11. SUMMARY;586
19.12;ACKNOWLEDGEMENTS;587
19.13;REFERENCES;587
20;18. Application of Dilute Nitride Materials to Heterojunction Bipolar Transistors;597
20.1;ABSTRACT;597
20.2;18.1. INTRODUCTION;597
20.3;18.2. DESIGN CONSIDERATIONS FOR GaInNAs BASE HBTs;603
20.4;18.3. MATERIAL GROWTH AND DEVICE PROCESSING;609
20.5;18.4. GaInNAs HBT RESULTS;613
20.6;18.5. CIRCUIT APPLICATIONS FOR GaInNAs HBTs;622
20.7;18.6. FUTURE OUTLOOK;624
20.8;ACKNOWLEDGEMENTS;626
20.9;REFERENCES;626
21;Index;631