Hemanth | Computational Methods and Deep Learning for Ophthalmology | Buch | 978-0-323-95415-0 | sack.de

Buch, Englisch, 320 Seiten, Format (B × H): 234 mm x 191 mm, Gewicht: 450 g

Hemanth

Computational Methods and Deep Learning for Ophthalmology


Erscheinungsjahr 2023
ISBN: 978-0-323-95415-0
Verlag: Elsevier Science

Buch, Englisch, 320 Seiten, Format (B × H): 234 mm x 191 mm, Gewicht: 450 g

ISBN: 978-0-323-95415-0
Verlag: Elsevier Science


Computational Methods and Deep Learning for Ophthalmology presents readers with the concepts and methods needed to design and use advanced computer-aided diagnosis systems for ophthalmologic abnormalities in the human eye. Chapters cover computational approaches for diagnosis and assessment of a variety of ophthalmologic abnormalities. Computational approaches include topics such as Deep Convolutional Neural Networks, Generative Adversarial Networks, Auto Encoders, Recurrent Neural Networks, and modified/hybrid Artificial Neural Networks. Ophthalmological abnormalities covered include Glaucoma, Diabetic Retinopathy, Macular Degeneration, Retinal Vein Occlusions, eye lesions, cataracts, and optical nerve disorders.

This handbook provides biomedical engineers, computer scientists, and multidisciplinary researchers with a significant resource for addressing the increase in the prevalence of diseases such as Diabetic Retinopathy, Glaucoma, and Macular Degeneration.

Hemanth Computational Methods and Deep Learning for Ophthalmology jetzt bestellen!

Zielgruppe


<p>Researchers, developers, and industry professionals in Machine Learning, Deep Learning, Computational Intelligence, Medical Image Analysis, and Medical Decision Support Systems, as well as researchers and industry professionals in biomedical imaging, and human-machine interaction. In addition, clinicians and ophthalmologists who are involved in rese</p>


Autoren/Hrsg.


Weitere Infos & Material


1. Classification of ocular diseases using transfer learning approaches and glaucoma severity grading

D. Selvathi

2. Early diagnosis of diabetic retinopathy using deep learning techniques

Bam Bahadur Sinha, R. Dhanalakshmi and K. Balakrishnan

3. Comparison of deep CNNs in the identification of DME structural changes in retinal OCT scans

N. Padmasini, R. Umamaheswari, Mohamed Yacin Sikkandar and Manavi D. Sindal

4. Epidemiological surveillance of blindness using deep learning approaches

Kurubaran Ganasegeran and Mohd Kamarulariffin Kamarudin

5. Transfer learning-based detection of retina damage from optical coherence tomography images

Bam Bahadur Sinha, Alongbar Wary, R. Dhanalakshmi and K. Balakrishnan

6. An improved approach for classification of glaucoma stages from color fundus images using Efficientnet-b0 convolutional neural network and recurrent neural network

Poonguzhali Elangovan, D. Vijayalakshmi and Malaya Kumar Nath

7. Diagnosis of ophthalmic retinoblastoma tumors using 2.75D CNN segmentation technique

T. Jemima Jebaseeli and D. Jasmine David

8. Fast bilateral filter with unsharp masking for the preprocessing of optical coherence tomography images - an aid for segmentation and classification

Ranjitha Rajan and S.N. Kumar

9. Deep learning approaches for the retinal vasculature segmentation in fundus images

V. Sathananthavathi and G. Indumathi

10. Grading of diabetic retinopathy using deep learning techniques

Asha Gnana Priya H, Anitha J and Ebenezer Daniel

11. Segmentation of blood vessels and identification of lesion in fundus image by using fractional derivative in fuzzy domain

V.P. Ananthi and G. Santhiya

12. U-net autoencoder architectures for retinal blood vessels segmentation

S. Deivalakshmi, R. Adarsh, J. Sudaroli Sandana and Gadipudi Amarnageswarao

13. Detection and diagnosis of diseases by feature extraction and analysis on fundus images using deep learning techniques

Ajantha Devi Vairamani



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.