Heidbreder | Maximum Entropy and Bayesian Methods Santa Barbara, California, U.S.A., 1993 | Buch | 978-90-481-4407-5 | sack.de

Buch, Englisch, 414 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 645 g

Reihe: Fundamental Theories of Physics

Heidbreder

Maximum Entropy and Bayesian Methods Santa Barbara, California, U.S.A., 1993

Buch, Englisch, 414 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 645 g

Reihe: Fundamental Theories of Physics

ISBN: 978-90-481-4407-5
Verlag: Springer Netherlands


Maximum entropy and Bayesian methods have fundamental, central roles in scientific inference, and, with the growing availability of computer power, are being successfully applied in an increasing number of applications in many disciplines. This volume contains selected papers presented at the Thirteenth International Workshop on Maximum Entropy and Bayesian Methods. It includes an extensive tutorial section, and a variety of contributions detailing application in the physical sciences, engineering, law, and economics.
Researchers and other professionals whose work requires the application of practical statistical inference.
Heidbreder Maximum Entropy and Bayesian Methods Santa Barbara, California, U.S.A., 1993 jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


Tutorial.- An Introduction to Model Selection Using Probability Theory as Logic.- Bayesian Hyperparameters.- Hyperparameters: Optimize, or Integrate Out?.- What Bayes has to Say about the Evidence Procedure.- Reconciling Bayesian and Non-Bayesian Analysis.- Bayesian Robustness.- Bayesian Robustness: A New Look from Geometry.- Local Posterior Robustness with Parametric Priors: Maximum and Average Sensitivity.- Clustering.- Tree-Structured Clustering via the Minimum Cross Entropy Principle.- Inverse Problems.- A Scale-Invariant Bayesian Method to Solve Linear Inverse Problems.- Maximum Entropy Signal Transmission.- Quantum Probability Theory.- Maximum Quantum Entropy for Classical Density Functions.- Smoothing in Maximum Quantum Entropy.- Density Estimation by Maximum Quantum Entropy.- Philosophy.- Belief and Desire.- Computational Issues.- A Bayesian Genetic Algorithm for Calculating Maximum Entropy Distributions.- A Mathematica™ Package for Symbolic Bayesian Calculations.- A Multicriterion Evaluation of the Memsys5 Program for PET.- Parallel Maximum Entropy Reconstruction of PET Images.- Applications.- Bayesian Non-Linear Modeling for the Prediction Competition.- Bayesian Modeling and Classification of Neural Signals.- Estimators for the Cauchy Distribution.- Probability Theory and Multiexponential Signals: How Accurately Can the Parameters be Determined?.- Pixon-Based Image Reconstruction.- Super-Resolved Surface Reconstruction from Multiple Images.- Bayesian Analysis of Linear Phased-Array Radar.- Neural Network Image Deconvolution.- Bayesian Resolution of Closely Spaced Objects.- Ultrasonic Image Improvement through the Use of Bayesian Priors Which are Based on Adjacent Scanned Traces.- Application of Maxent to Inverse Photoemission Spectroscopy.- An EntropyEstimator Algorithm and Telecommunications Applications.- A Common Bayesian Approach to Multiuser Detection and Channel Equalization.- Thermostatics in Financial Economics.- Lessons from the New Evidence Scholarship.- How Good are a Set of Probability Predictions? The Expected Recommendation Loss (ERL) Scoring Rule.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.