Buch, Englisch, 414 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 645 g
Buch, Englisch, 414 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 645 g
Reihe: Fundamental Theories of Physics
ISBN: 978-90-481-4407-5
Verlag: Springer Netherlands
Researchers and other professionals whose work requires the application of practical statistical inference.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Naturwissenschaften Physik Physik Allgemein Experimentalphysik
- Mathematik | Informatik Mathematik Stochastik Elementare Stochastik
- Mathematik | Informatik EDV | Informatik Angewandte Informatik Computeranwendungen in Wissenschaft & Technologie
- Technische Wissenschaften Technik Allgemein Computeranwendungen in der Technik
- Interdisziplinäres Wissenschaften Wissenschaften: Forschung und Information Datenanalyse, Datenverarbeitung
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Wissensbasierte Systeme, Expertensysteme
- Naturwissenschaften Physik Physik Allgemein Theoretische Physik, Mathematische Physik, Computerphysik
- Naturwissenschaften Physik Physik Allgemein Geschichte der Physik
- Technische Wissenschaften Elektronik | Nachrichtentechnik Elektronik Robotik
- Mathematik | Informatik Mathematik Stochastik Mathematische Statistik
- Medizin | Veterinärmedizin Medizin | Public Health | Pharmazie | Zahnmedizin Medizinische Fachgebiete Bildgebende Verfahren, Nuklearmedizin, Strahlentherapie Radiologie, Bildgebende Verfahren
- Mathematik | Informatik Mathematik Stochastik Stochastische Prozesse
- Mathematik | Informatik Mathematik Stochastik Wahrscheinlichkeitsrechnung
Weitere Infos & Material
Tutorial.- An Introduction to Model Selection Using Probability Theory as Logic.- Bayesian Hyperparameters.- Hyperparameters: Optimize, or Integrate Out?.- What Bayes has to Say about the Evidence Procedure.- Reconciling Bayesian and Non-Bayesian Analysis.- Bayesian Robustness.- Bayesian Robustness: A New Look from Geometry.- Local Posterior Robustness with Parametric Priors: Maximum and Average Sensitivity.- Clustering.- Tree-Structured Clustering via the Minimum Cross Entropy Principle.- Inverse Problems.- A Scale-Invariant Bayesian Method to Solve Linear Inverse Problems.- Maximum Entropy Signal Transmission.- Quantum Probability Theory.- Maximum Quantum Entropy for Classical Density Functions.- Smoothing in Maximum Quantum Entropy.- Density Estimation by Maximum Quantum Entropy.- Philosophy.- Belief and Desire.- Computational Issues.- A Bayesian Genetic Algorithm for Calculating Maximum Entropy Distributions.- A Mathematica™ Package for Symbolic Bayesian Calculations.- A Multicriterion Evaluation of the Memsys5 Program for PET.- Parallel Maximum Entropy Reconstruction of PET Images.- Applications.- Bayesian Non-Linear Modeling for the Prediction Competition.- Bayesian Modeling and Classification of Neural Signals.- Estimators for the Cauchy Distribution.- Probability Theory and Multiexponential Signals: How Accurately Can the Parameters be Determined?.- Pixon-Based Image Reconstruction.- Super-Resolved Surface Reconstruction from Multiple Images.- Bayesian Analysis of Linear Phased-Array Radar.- Neural Network Image Deconvolution.- Bayesian Resolution of Closely Spaced Objects.- Ultrasonic Image Improvement through the Use of Bayesian Priors Which are Based on Adjacent Scanned Traces.- Application of Maxent to Inverse Photoemission Spectroscopy.- An EntropyEstimator Algorithm and Telecommunications Applications.- A Common Bayesian Approach to Multiuser Detection and Channel Equalization.- Thermostatics in Financial Economics.- Lessons from the New Evidence Scholarship.- How Good are a Set of Probability Predictions? The Expected Recommendation Loss (ERL) Scoring Rule.