Hedayat / Sloane / Stufken | Orthogonal Arrays | E-Book | sack.de
E-Book

E-Book, Englisch, 417 Seiten, Web PDF

Reihe: Springer Series in Statistics

Hedayat / Sloane / Stufken Orthogonal Arrays

Theory and Applications
Erscheinungsjahr 2012
ISBN: 978-1-4612-1478-6
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark

Theory and Applications

E-Book, Englisch, 417 Seiten, Web PDF

Reihe: Springer Series in Statistics

ISBN: 978-1-4612-1478-6
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark



Hedayat / Sloane / Stufken Orthogonal Arrays jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


1 Introduction.- 1.1 Problems.- 2 Rao’s Inequalities and Improvements.- 2.1 Introduction.- 2.2 Rao’s Inequalities.- 2.3 Improvements on Rao’s Bounds for Strength 2 and 3.- 2.4 Improvements on Rao’s Bounds for Arrays of Index Unity.- 2.5 Orthogonal Arrays with Two Levels.- 2.6 Concluding Remarks.- 2.7 Notes on Chapter 2.- 2.8 Problems.- 3 Orthogonal Arrays and Galois Fields.- 3.1 Introduction.- 3.2 Bush’s Construction.- 3.3 Addelman and Kempthorne’s Construction.- 3.4 The Rao-Hamming Construction.- 3.5 Conditions for a Matrix.- 3.6 Concluding Remarks.- 3.7 Problems.- 4 Orthogonal Arrays and Error-Correcting Codes.- 4.1 An Introduction to Error-Correcting Codes.- 4.2 Linear Codes.- 4.3 Linear Codes and Linear Orthogonal Arrays.- 4.4 Weight Enumerators and Delsarte’s Theorem.- 4.5 The Linear Programming Bound.- 4.6 Concluding Remarks.- 4.7 Notes on Chapter 4.- 4.8 Problems.- 5 Construction of Orthogonal Arrays from Codes.- 5.1 Extending a Code by Adding More Coordinates.- 5.2 Cyclic Codes.- 5.3 The Rao-Hamming Construction Revisited.- 5.4 BCH Codes.- 5.5 Reed-Solomon Codes.- 5.6 MDS Codes and Orthogonal Arrays of Index Unity.- 5.7 Quadratic Residue and Golay Codes.- 5.8 Reed-Muller Codes.- 5.9 Codes from Finite Geometries.- 5.10 Nordstrom-Robinson and Related Codes.- 5.11 Examples of Binary Codes and Orthogonal Arrays.- 5.12 Examples of Ternary Codes and Orthogonal Arrays.- 5.13 Examples of Quaternary Codes and Orthogonal Arrays.- 5.14 Notes on Chapter 5.- 5.15 Problems.- 6 Orthogonal Arrays and Difference Schemes.- 6.1 Difference Schemes.- 6.2 Orthogonal Arrays Via Difference Schemes.- 6.3 Bose and Bush’s Recursive Construction.- 6.4 Difference Schemes of Index 2.- 6.5 Generalizations and Variations.- 6.6 Concluding Remarks.- 6.7 Notes on Chapter 6.- 6.8Problems.- 7 Orthogonal Arrays and Hadamard Matrices.- 7.1 Introduction.- 7.2 Basic Properties of Hadamard Matrices.- 7.3 The Connection Between Hadamard Matrices and Orthogonal Arrays.- 7.4 Constructions for Hadamard Matrices.- 7.5 Hadamard Matrices of Orders up to 200.- 7.6 Notes on Chapter 7.- 7.7 Problems.- 8 Orthogonal Arrays and Latin Squares.- 8.1 Latin Squares and Orthogonal Latin Squares.- 8.2 Frequency Squares and Orthogonal Frequency Squares.- 8.3 Orthogonal Arrays from Pairwise Orthogonal Latin Squares.- 8.4 Concluding Remarks.- 8.5 Problems.- 9 Mixed Orthogonal Arrays.- 9.1 Introduction.- 9.2 The Rao Inequalities for Mixed Orthogonal Arrays.- 9.3 Constructing Mixed Orthogonal Arrays.- 9.4 Further Constructions.- 9.5 Notes on Chapter 9.- 9.6 Problems.- 10 Further Constructions and Related Structures.- 10.1 Constructions Inspired by Coding Theory.- 10.2 The Juxtaposition Construction.- 10.3 The (u, u + ?) Construction.- 10.4 Construction X4.- 10.5 Orthogonal Arrays from Union of Translates of a Linear Code.- 10.6 Bounds on Large Orthogonal Arrays.- 10.7 Compound Orthogonal Arrays.- 10.8 Orthogonal Multi-Arrays.- 10.9 Transversal Designs, Resilient Functions and Nets.- 10.10 Schematic Orthogonal Arrays.- 10.11 Problems.- 11 Statistical Application of Orthogonal Arrays.- 11.1 Factorial Experiments.- 11.2 Notation and Terminology.- 11.3 Factorial Effects.- 11.4 Analysis of Experiments Based on Orthogonal Arrays.- 11.5 Two-Level Fractional Factorials with a Defining Relation.- 11.6 Blocking for a 2k-n Fractional Factorial.- 11.7 Orthogonal Main-Effects Plans and Orthogonal Arrays.- 11.8 Robust Design.- 11.9 Other Types of Designs.- 11.10 Notes on Chapter 11.- 11.11 Problems.- 12 Tables of Orthogonal Arrays.- 12.1 Tables of Orthogonal Arrays of Minimal Index.-12.2 Description of Tables 12.1?12.3.- 12.3 Index Tables.- 12.4 If No Suitable Orthogonal Array Is Available.- 12.5 Connections with Other Structures.- 12.6 Other Tables.- Appendix A: Galois Fields.- A.1 Definition of a Field.- A.2 The Construction of Galois Fields.- A.3 The Existence of Galois Fields.- A.4 Quadratic Residues in Galois Fields.- A.5 Problems.- Author Index.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.